Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

Cited 29 time in webofscience Cited 0 time in scopus
  • Hit : 388
  • Download : 0
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Publisher
IOP PUBLISHING LTD
Issue Date
2018-02
Language
English
Article Type
Article
Citation

NANOTECHNOLOGY, v.29, no.8

ISSN
0957-4484
DOI
10.1088/1361-6528/aaa3a3
URI
http://hdl.handle.net/10203/240135
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0