The l-th power Diffie-Hellman problem and the l-th root Diffie-Hellman problem

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 171
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRoh, Dongyoungko
dc.contributor.authorKim, I Yeolko
dc.contributor.authorHahn, Sang Geunko
dc.date.accessioned2018-02-21T05:34:14Z-
dc.date.available2018-02-21T05:34:14Z-
dc.date.created2018-01-29-
dc.date.created2018-01-29-
dc.date.created2018-01-29-
dc.date.issued2018-01-
dc.identifier.citationAPPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, v.29, no.1, pp.41 - 57-
dc.identifier.issn0938-1279-
dc.identifier.urihttp://hdl.handle.net/10203/240094-
dc.description.abstractThere are many variants of the computational Diffie-Hellman problem that are necessary to provide security of many cryptographic schemes. Two of them are the square Diffie-Hellman problem and the square root Diffie-Hellman problem. Recently, the first and third authors proved that these two problems are polynomial-time equivalent under a certain condition (Roh and Hahn in Des Codes Cryptogr 62(2): 179-187, 2011). In this paper, we generalize this result. We introduce the l-th power Diffie-Hellman problem and the l-th root Diffie-Hellman problem and show that these two problems are polynomial-time equivalent for l = O(log p) under a condition similar to that of Roh and Hahn (2011), where p is the order of the underlying group.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.subjectSIGNATURE SCHEMES-
dc.titleThe l-th power Diffie-Hellman problem and the l-th root Diffie-Hellman problem-
dc.typeArticle-
dc.identifier.wosid000419962700003-
dc.identifier.scopusid2-s2.0-85019913061-
dc.type.rimsART-
dc.citation.volume29-
dc.citation.issue1-
dc.citation.beginningpage41-
dc.citation.endingpage57-
dc.citation.publicationnameAPPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING-
dc.identifier.doi10.1007/s00200-017-0321-3-
dc.contributor.localauthorHahn, Sang Geun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDiscrete logarithm problem-
dc.subject.keywordAuthorComputational Diffie-Hellman problem-
dc.subject.keywordAuthorSquare Diffie-Hellman problem-
dc.subject.keywordAuthorSquare root Diffie-Hellman problem-
dc.subject.keywordAuthorl-th power Diffie-Hellman problem-
dc.subject.keywordAuthorl-th root Diffie-Hellman problem-
dc.subject.keywordPlusSIGNATURE SCHEMES-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0