Modified Nonnegative Matrix Factorization Using the Hadamard Product to Estimate Real-Time Continuous Finger-Motion Intentions

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 296
  • Download : 0
In daily life, most hand movements involve the simultaneous activation of multiple fingers. Models generated by semiunsupervised learning in which only individual finger activation data are used in training have recently been suggested for simultaneous and proportional control of prosthetic robot hands. Although training with many datasets should be avoided, simultaneous activation data need to be used, for example, when the model estimation of the simultaneous activation is very poor or highly coupled among the degrees-of-freedoms (DOFs). In this paper, we propose a method for generating a model using any type of activation data (individual, simultaneous, or both) by modifying the nonnegativematrix factorization (NMF) with the Hadamard product (HP). The model provided by this method is called NMF-HP. NMF-HP has two advantages: First, it can use simultaneous activation data for training. Second, NMF-HP decouples coupled DOFs by forcing nonactive DOFs to be zero during the training phase. NMF-HP was tested in two cases (trained with only individual activation data and trained with both individual and simultaneous activation data) in offline and online experiments. In the offline test, NMF-HP outperformed the conventional semiunsupervised models for the simultaneous activation of the fingers. In the online test, NMF-HP was significantly better than NMF in the estimation of finger-motion intentions. This result contrasts with that of a previous study in which performance in the online test revealed a little difference between the models, possibly due to the human-embedded control. Thus, the result of this paper indicates that using simultaneous activation data and reducing the coupling among DOFs may be effective in enhancing the performance of the real-time control of a prosthetic robot hand.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2017-12
Language
English
Article Type
Article
Keywords

PROPORTIONAL MYOELECTRIC CONTROL; PATTERN-RECOGNITION; EMG; CHALLENGES; ONLINE; TASKS

Citation

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, v.47, no.6, pp.1089 - 1099

ISSN
2168-2291
DOI
10.1109/THMS.2017.2751549
URI
http://hdl.handle.net/10203/228505
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0