Critical point analysis using domain lifting for fast geometry queries

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 206
  • Download : 0
In this paper, a general scheme for solving coherent geometric queries on freeform geometry is presented and demonstrated on a variety of problems common in geometric modeling. The underlying strategy of the approach is to lift the domain of the problem into a higher-dimensional space to enable analysis on the continuum of all possible configurations of the geometry. This higher-dimensional space supports analysis of changes to solution topology by solving for critical points using a B-spline-based constraint solver. The critical points are then used to guide fast, local methods to robustly update repeated queries. This approach effectively combines the speed of local updates with the robustness of global search solutions. The effectiveness of the domain lifting scheme (DLS) is demonstrated on several geometric computations, including accurately generating offset curves and finding minimum distances. Our approach requires a preprocessing step that computes the critical points, but once the topology is analyzed, an arbitrary number of geometry queries can be solved using fast local methods. Experimental results show that the approach solves for several hundred minimum distance computations between planar curves in one second and results in a hundredfold speedup for trimming self-intersections in offset curves.
Publisher
ELSEVIER SCI LTD
Issue Date
2010-07
Language
English
Article Type
Article
Keywords

SURFACE PATCHES; EFFICIENT; COMPUTATION; ALGORITHM

Citation

COMPUTER-AIDED DESIGN, v.42, no.7, pp.613 - 624

ISSN
0010-4485
DOI
10.1016/j.cad.2010.03.004
URI
http://hdl.handle.net/10203/226657
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0