An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting

Cited 43 time in webofscience Cited 0 time in scopus
  • Hit : 545
  • Download : 0
Photoelectrochemical (PEC) cells have attracted much attention as a viable route for storing solar energy and producing value-added chemicals and fuels. However, the competition between light absorption and electrocatalysis at a restrained cocatalyst area on conventional planar-type photo electrodes could limit their conversion efficiency. Here, we demonstrate a new monolithic photoelectrode architecture that eliminate the optical-electrochemical coupling by forming locally nanostructured cocatalysts on a photoelectrode. As a model study, Ni inverse opal (IO), an ordered three-dimensional porous nanostructure, was used as a surface-area-controlled electrocatalyst locally formed on Si photoanodes. The optical-electrochemical decoupling of our monolithic photoanodes significantly enhances the PEC performance for the oxygen evolution reaction (OER) by increasing light absorption and by providing more electrochemically active sites. Our Si photoanode with local Ni IOs maintains an identical photolimiting current density but reduces the overpotential by about 120 mV compared to a Si photoanode with planar Ni cocatalysts with the same footprint under 1 sun illumination. Finally, a highly efficient Si photoanode with an onset potential of 0.94 V vs reversible hydrogen electrode (RHE) and a photocurrent density of 31.2 mA/cm(2) at 1.23 V vs RHE in 1 M KOH under 1 sun illumination is achieved with local NiFe alloy IOs.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-09
Language
English
Article Type
Article
Keywords

OXYGEN-EVOLUTION; SILICON PHOTOANODES; METAL-ELECTRODES; CARBON-DIOXIDE; REDUCTION; OXIDATION; CATALYSTS; EFFICIENCY; NI; HYDROGEN

Citation

NANO LETTERS, v.17, no.9, pp.5416 - 5422

ISSN
1530-6984
DOI
10.1021/acs.nanolett.7b02023
URI
http://hdl.handle.net/10203/226411
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 43 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0