High quality chalcogenide-silica hybrid wedge resonator

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 753
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKang, Guminko
dc.contributor.authorKrogstad, Molly R.ko
dc.contributor.authorGrayson, Michaelko
dc.contributor.authorKim, Dae-Gonko
dc.contributor.authorLee, Hansuekko
dc.contributor.authorGopinath, Juliet T.ko
dc.contributor.authorPark, Wounjhangko
dc.date.accessioned2017-07-18T06:30:59Z-
dc.date.available2017-07-18T06:30:59Z-
dc.date.created2017-07-10-
dc.date.created2017-07-10-
dc.date.issued2017-06-
dc.identifier.citationOPTICS EXPRESS, v.25, no.13, pp.15581 - 15589-
dc.identifier.issn1094-4087-
dc.identifier.urihttp://hdl.handle.net/10203/224870-
dc.description.abstractChalcogenide glasses, with high nonlinearity and low loss, have captured research interest as an integrated device platform for near-and mid-infrared nonlinear optical devices. Compared to silicon-based microfabrication technologies, chalcogenide fabrication processes are less mature and a major challenge is obtaining high quality devices. In this paper, we report a hybrid resonator design leveraging a high quality silica resonator to achieve high Q factors with chalcogenide. The device is composed of a thin chalcogenide layer deposited on a silica wedge resonator. The hybrid resonators exhibit loaded Q factors up to 1.5 x 10(5) in the near-infrared region. We also measured the effective thermo-optic coefficient of the device to be 5.5x10(-5)/K, which agreed well with the bulk value. Thermal drift of the device can be significantly reduced by introducing a titanium dioxide cladding layer with a negative thermo-optic coefficient. (C) 2017 Optical Society of America-
dc.languageEnglish-
dc.publisherOPTICAL SOC AMER-
dc.subjectWAVE-GUIDES-
dc.subjectMICRODISK RESONATORS-
dc.subjectMICRORING RESONATORS-
dc.subjectINDEX-
dc.subjectGLASS-
dc.subjectCHIP-
dc.subjectPHOTONICS-
dc.subjectDEVICES-
dc.subjectFILMS-
dc.subjectIR-
dc.titleHigh quality chalcogenide-silica hybrid wedge resonator-
dc.typeArticle-
dc.identifier.wosid000404189800146-
dc.identifier.scopusid2-s2.0-85021352978-
dc.type.rimsART-
dc.citation.volume25-
dc.citation.issue13-
dc.citation.beginningpage15581-
dc.citation.endingpage15589-
dc.citation.publicationnameOPTICS EXPRESS-
dc.identifier.doi10.1364/OE.25.015581-
dc.contributor.localauthorLee, Hansuek-
dc.contributor.nonIdAuthorKang, Gumin-
dc.contributor.nonIdAuthorKrogstad, Molly R.-
dc.contributor.nonIdAuthorGrayson, Michael-
dc.contributor.nonIdAuthorGopinath, Juliet T.-
dc.contributor.nonIdAuthorPark, Wounjhang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusWAVE-GUIDES-
dc.subject.keywordPlusMICRODISK RESONATORS-
dc.subject.keywordPlusMICRORING RESONATORS-
dc.subject.keywordPlusINDEX-
dc.subject.keywordPlusGLASS-
dc.subject.keywordPlusCHIP-
dc.subject.keywordPlusPHOTONICS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusIR-
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0