Current understanding and future research directions at the onset of the next century of sintering science and technology

Cited 195 time in webofscience Cited 0 time in scopus
  • Hit : 1000
  • Download : 314
DC FieldValueLanguage
dc.contributor.authorBordia, Rajendra K.ko
dc.contributor.authorKang, Suk-Joong L.ko
dc.contributor.authorOlevsky, Eugene A.ko
dc.date.accessioned2017-07-04T02:46:28Z-
dc.date.available2017-07-04T02:46:28Z-
dc.date.created2017-06-26-
dc.date.created2017-06-26-
dc.date.created2017-06-26-
dc.date.created2017-06-26-
dc.date.issued2017-06-
dc.identifier.citationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, v.100, no.6, pp.2314 - 2352-
dc.identifier.issn0002-7820-
dc.identifier.urihttp://hdl.handle.net/10203/224713-
dc.description.abstractSintering and accompanying microstructural evolution is inarguably the most important step in the processing of ceramics and hard metals. In this process, an ensemble of particles is converted into a coherent object of controlled density and microstructure at an elevated temperature (but below the melting point) due to the thermodynamic tendency of the particle system to decrease its total surface and interfacial energy. Building on a long development history as a major technological process, sintering remains among the most viable methods of fabricating novel ceramics, including high surface area structures, nanopowder-based systems, and tailored structural and functional materials. Developing new and perfecting existing sintering techniques is crucial to meet ever-growing demand for a broad range of technologically significant systems including, for example, fuel and solar cell components, electronic packages and elements for computers and wireless devices, ceramic and metal-based bioimplants, thermoelectric materials, materials for thermal management, and materials for extreme environments. In this study, the current state of the science and technology of sintering is presented. This study is, however, not a comprehensive review of this extremely broad field. Furthermore, it only focuses on the sintering of ceramics. The fundamentals of sintering, including the thermodynamics and kinetics for solid-state- and liquid-phase-sintered systems are described. This study summarizes that the sintering of amorphous ceramics (glasses) is well understood and there is excellent agreement between theory and experiments. For crystalline materials, attention is drawn to the effect of the grain boundary and interface structure on sintering and microstructural evolution, areas that are expected to be significant for future studies. Considerable emphasis is placed on the topics of current research, including the sintering of composites, multilayered systems, microstructure-based models, multiscale models, sintering under external stresses, and innovative and novel sintering approaches, such as field-assisted sintering. This study includes the status of these subfields, the outstanding challenges and opportunities, and the outlook of progress in sintering research. Throughout the manuscript, we highlight the important lessons learned from sintering fundamentals and their implementation in practice.-
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.titleCurrent understanding and future research directions at the onset of the next century of sintering science and technology-
dc.typeArticle-
dc.identifier.wosid000402610900002-
dc.identifier.scopusid2-s2.0-85019244542-
dc.type.rimsART-
dc.citation.volume100-
dc.citation.issue6-
dc.citation.beginningpage2314-
dc.citation.endingpage2352-
dc.citation.publicationnameJOURNAL OF THE AMERICAN CERAMIC SOCIETY-
dc.identifier.doi10.1111/jace.14919-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKang, Suk-Joong L.-
dc.contributor.nonIdAuthorBordia, Rajendra K.-
dc.contributor.nonIdAuthorOlevsky, Eugene A.-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorcomposites-
dc.subject.keywordAuthorfield-assisted sintering-
dc.subject.keywordAuthorgrain growth-
dc.subject.keywordAuthormicrostructure evolution-
dc.subject.keywordAuthormultilayered systems-
dc.subject.keywordAuthormultiscale models-
dc.subject.keywordAuthorreview-
dc.subject.keywordAuthorsintering-
dc.subject.keywordAuthorsintering fundamentals-
dc.subject.keywordAuthorstress-assisted sintering-
dc.subject.keywordPlusABNORMAL GRAIN-GROWTH-
dc.subject.keywordPlusFINITE-ELEMENT-ANALYSIS-
dc.subject.keywordPlusPORE-FILLING THEORY-
dc.subject.keywordPlusYTTRIA-STABILIZED ZIRCONIA-
dc.subject.keywordPlusGLASS MATRIX COMPOSITES-
dc.subject.keywordPlusOXYGEN PARTIAL-PRESSURE-
dc.subject.keywordPlusLOW-DENSITY GLASSES-
dc.subject.keywordPlusALUMINA THIN-FILMS-
dc.subject.keywordPlusFACETED WC GRAINS-
dc.subject.keywordPlusPOWDER COMPACTS-
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 195 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0