A strain rate dependent orthotropic concrete material model

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 587
  • Download : 0
An orthotropic material model to predict the behavior of concrete subjected to dynamic biaxial or tri-axial loading is introduced in this paper. The proposed model is based on the dynamic triaxial strength envelope and the dynamic increase factor (DIF) obtained from multi-axial dynamic experiments for concrete. Differently from the plasticity based models, an orthotropic material model, which is one of the elasticity based models, can easily be implemented in numerical formulations because the stress state is directly determined from the defined stress-strain relation. In advance, consideration of the mesh-dependency in a finite element (FE) analysis is included in the model to accurately describe the failure process of concrete structures. The strength envelope and stress-strain curves of the proposed orthotropic model were compared with the available experimental data under multi-axial stresses, and then numerical analyses were performed for a perforation test of a concrete slab subjected to a projectile and a blast test of concrete beam. The results show that the proposed orthotropic model can effectively be used in the impact and blast analyses of concrete structures and gives numerical results that are insensitive to the employed FE mesh size. (C) 2017 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2017-05
Language
English
Article Type
Article
Keywords

HIGH-STRENGTH CONCRETE; PROJECTILE IMPACT; DYNAMIC-BEHAVIOR; COMPRESSION; PERFORATION; SIMULATION; STEEL; SLABS; LOAD

Citation

INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, v.103, pp.211 - 224

ISSN
0734-743X
DOI
10.1016/j.ijimpeng.2017.01.027
URI
http://hdl.handle.net/10203/223587
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0