Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries

Cited 124 time in webofscience Cited 0 time in scopus
  • Hit : 641
  • Download : 0
Despite the extraordinary gravimetric energy densities, lithium-oxygen (Li-O-2) batteries are still facing a technological challenge; limited round trip efficiency leading to insufficient cycle life. Recently, carbonaceous electrode materials were found to be one of the primary origins of the limited cycle life, as they produce irreversible side products during discharge. A few investigations based on noncarbonaceous materials have demonstrated largely suppressed accumulation of irreversible side products, but such studies have focused mainly on the materials themselves rather than delicate morphology control. As such, here, we report the synthesis of mesoporous titanium nitride (m-TiN) with a 2D hexagonal structure and large pores (>30 nm), which was templated by a block copolymer with tunable chain lengths, and introduce it as a stable air-cathode backbone. Due to the well-aligned pore structure and decent electric conductivity of TiN, the battery reaction was quite reversible, resulting in robust cycling performance for over 100 cycles under a potential cutoff condition. Furthermore, by protecting the Li metal with a poreless polyurethane separator and engaging a lithium iodide redox mediator, the original capacity was retained for 280 cycles under a consistent capacity condition (430 mAh g(-1)). This study reveals that when the appropriate structure and material choice of the air-cathode are coupled with an advanced separator and an effective solution-phase redox mediator, the cycle lives of Li-O-2 batteries can be enhanced dramatically.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-02
Language
English
Article Type
Article
Citation

ACS NANO, v.11, no.2, pp.1736 - 1746

ISSN
1936-0851
DOI
10.1021/acsnano.6b07635
URI
http://hdl.handle.net/10203/222712
Appears in Collection
CBE-Journal Papers(저널논문)EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 124 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0