Delicate Structural Control of Si-SiOx-C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes

Cited 141 time in webofscience Cited 0 time in scopus
  • Hit : 695
  • Download : 0
Despite the high theoretical capacity, silicon (Si) anodes in lithium-ion batteries have difficulty in meeting the commercial standards in various aspects. In particular, the huge volume change of Si makes it very challenging to simultaneously achieve high initial Coulombic efficiency (ICE) and long-term cycle life. Herein, we report spray pyrolysis to prepare Si-SiOx composite using an aqueous precursor solution containing Si nanoparticles, citric acid, and sodium hydroxide (NaOH). In the precursor solution, Si nanoparticles are etched by NaOH with the production of [SiO4](4-). During the dynamic course of spray pyrolysis, [SiO4](4-) transforms to SiOx matrix and citric acid decomposes to carbon surface layer with the assistance of NaOH that serves as a decomposition catalyst. As a result, a Si-SiOx composite, in which Si nanodomains are homogeneously embedded in the SiOx matrix with carbon surface layer, is generated by a one-pot process with a residence time of only 3.5 s in a flow reactor. The optimal composite structure in terms of Si domain size and Si-to-O ratio exhibited excellent electrochemical performance, such as reversible capacity of 1561.9 mAh g(-1) at 0.06C rate and ICE of 80.2% and 87.9% capacity retention after 100 cycles at 1C rate.
Publisher
AMER CHEMICAL SOC
Issue Date
2017-03
Language
English
Article Type
Article
Keywords

BOTTOM-UP APPROACH; SILICON MONOXIDE; CRYSTALLINE SILICON; NEGATIVE ELECTRODE; LITHIUM BATTERIES; CARBON SPHERES; POROUS CARBON; PERFORMANCE; STORAGE; EVOLUTION

Citation

NANO LETTERS, v.17, no.3, pp.1870 - 1876

ISSN
1530-6984
DOI
10.1021/acs.nanolett.6b05191
URI
http://hdl.handle.net/10203/222687
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 141 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0