Facile Synthesis of Ca-Doped LaCoO3 Perovskite via Chemically Assisted Electrodeposition as a Protective Film on Solid Oxide Fuel Cell Interconnects

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 353
  • Download : 0
Interconnects in solid oxide fuel cells (SOFCs) serve two essential roles, namely, cell-to-cell electrical connection and the separation of fuel and oxidant gases. It is of practical significance to develop a protective coating that is capable of improving the surface stability of metallic interconnects while maintaining their electrical properties. Perovskite-type oxides are recognized as promising materials for protective coatings; however, it is difficult to fabricate high-density films by conventional powder-sintering processes. In this paper, we report a facile electrodeposition-based approach to preparing perovskite oxide films on SOFC interconnects. A high density, adhesive Ca-doped LaCoO3 perovskite film of similar to 1.3 mu m thickness is directly formed on an SOFC interconnect through the "chemically assisted electrodeposition" of hydroxide combined with the thermal conversion of hydroxide to oxide. In the proposed synthesis method, the electrodeposition parameters, such as solution composition and deposition time, have a strong influence on the composition, microstructure, and adhesion of the perovskite oxide film. The fabricated film exhibits outstanding performance as a protective coating for SOFC interconnects, as evidenced by a low area-specific resistance of 14.4 m Omega cm(2) at 800 degrees C and high stability during both continuous operation and repeated thermal cycling. (C) 2016 The Electrochemical Society. All rights reserved.
Publisher
ELECTROCHEMICAL SOC INC
Issue Date
2016
Language
English
Article Type
Article
Keywords

FERRITIC STAINLESS-STEEL; METALLIC INTERCONNECT; TRANSITION; OXIDATION; COATINGS; SPECTROSCOPY; DEPOSITION; BEHAVIOR

Citation

JOURNAL OF THE ELECTROCHEMICAL SOCIETY, v.163, no.9, pp.F1066 - F1071

ISSN
0013-4651
DOI
10.1149/2.0641609jes
URI
http://hdl.handle.net/10203/218281
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0