Free boundaries surfaces and Saddle towers minimal surfaces in S-2 x R

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 169
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMorabito, Filippoko
dc.date.accessioned2016-12-29T07:19:24Z-
dc.date.available2016-12-29T07:19:24Z-
dc.date.created2016-06-07-
dc.date.created2016-06-07-
dc.date.created2016-06-07-
dc.date.issued2016-11-
dc.identifier.citationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.443, no.1, pp.478 - 525-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/10203/214882-
dc.description.abstractThe aim of this work is to show that for each finite natural number l >= 2 there exists a 1-parameter family of Saddle Tower type minimal surfaces embedded in S-2 x R, invariant with respect to a vertical translation. The genus of the quotient surface is 2l - 1. The proof is based on analytical techniques: precisely we desingularize of the union of gamma(j) x R, j is an element of {1, ... ,2l}, where gamma(j) subset of S-2 denotes a half great circle. These vertical cylinders intersect along a vertical straight line and its antipodal line. As byproduct of the construction we produce free boundary surfaces embedded in (S-2)(+) x R. Such surfaces are extended by reflection in partial derivative(S-2)(+) x R in order to get the minimal surfaces with the desired properties. (c) 2016 Published by Elsevier Inc.-
dc.languageEnglish-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectPRODUCT-
dc.titleFree boundaries surfaces and Saddle towers minimal surfaces in S-2 x R-
dc.typeArticle-
dc.identifier.wosid000378301400025-
dc.identifier.scopusid2-s2.0-85007227445-
dc.type.rimsART-
dc.citation.volume443-
dc.citation.issue1-
dc.citation.beginningpage478-
dc.citation.endingpage525-
dc.citation.publicationnameJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS-
dc.identifier.doi10.1016/j.jmaa.2016.05.006-
dc.contributor.localauthorMorabito, Filippo-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMinimal surfaces-
dc.subject.keywordAuthorDesingularization-
dc.subject.keywordAuthorPerturbation method-
dc.subject.keywordAuthorFree boundary surfaces-
dc.subject.keywordAuthorFixed point theorem-
dc.subject.keywordPlusPRODUCT-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0