Field-driven domain wall motion under a bias current in the creep and flow regimes in Pt/[CoSiB/Pt](N) nanowires

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 565
  • Download : 1065
The dynamics of magnetic domain wall (DW) in perpendicular magnetic anisotropy Pt/[CoSiB/Pt](N) nanowires was studied by measuring the DW velocity under a magnetic field (H) and an electric current (J) in two extreme regimes of DW creep and flow. Two important findings are addressed. One is that the field-driven DW velocity increases with increasing N in the flow regime, whereas the trend is inverted in the creep regime. The other is that the sign of spin current-induced effective field is gradually reversed with increasing N in both DW creep and flow regimes. To reveal the underlying mechanism of new findings, we performed further experiment and micromagnetic simulation, from which we found that the observed phenomena can be explained by the combined effect of the DW anisotropy, Dzyaloshinskii-Moriya interaction, spin-Hall effect, and spin-transfer torques. Our results shed light on the mechanism of DW dynamics in novel amorphous PMA nanowires, so that this work may open a path to utilize the amorphous PMA in emerging DW-based spintronic devices.
Publisher
NATURE PUBLISHING GROUP
Issue Date
2016-03
Language
English
Article Type
Article
Keywords

WALKER BREAKDOWN; DYNAMICS; PROPAGATION

Citation

SCIENTIFIC REPORTS, v.6, pp.23933

ISSN
2045-2322
DOI
10.1038/srep23933
URI
http://hdl.handle.net/10203/214143
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0