Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 301
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorSeo, Jihyeko
dc.contributor.authorAn, Yuriko
dc.contributor.authorLee, Jungsulko
dc.contributor.authorKu, Tae-Yunko
dc.contributor.authorKang, Yujungko
dc.contributor.authorAhn, Chulwooko
dc.contributor.authorChoi, Chulheeko
dc.date.accessioned2016-07-06T04:24:59Z-
dc.date.available2016-07-06T04:24:59Z-
dc.date.created2016-06-08-
dc.date.created2016-06-08-
dc.date.created2016-06-08-
dc.date.issued2016-04-
dc.identifier.citationJOURNAL OF BIOMEDICAL OPTICS, v.21, no.4-
dc.identifier.issn1083-3668-
dc.identifier.urihttp://hdl.handle.net/10203/209546-
dc.description.abstractIndocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features. (C) The Authors-
dc.languageEnglish-
dc.publisherSPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS-
dc.titlePrincipal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy-
dc.typeArticle-
dc.identifier.wosid000375929300008-
dc.identifier.scopusid2-s2.0-84964915828-
dc.type.rimsART-
dc.citation.volume21-
dc.citation.issue4-
dc.citation.publicationnameJOURNAL OF BIOMEDICAL OPTICS-
dc.identifier.doi10.1117/1.JBO.21.4.046003-
dc.contributor.localauthorChoi, Chulhee-
dc.contributor.nonIdAuthorSeo, Jihye-
dc.contributor.nonIdAuthorKang, Yujung-
dc.contributor.nonIdAuthorAhn, Chulwoo-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorbiophotonics-
dc.subject.keywordAuthorfluorescence imaging-
dc.subject.keywordAuthorindocyanine green-
dc.subject.keywordAuthorprincipal component analysis-
dc.subject.keywordAuthorvasculopathy-
dc.subject.keywordAuthorpharmacokinetics-
dc.subject.keywordPlusARTERIAL INPUT FUNCTION-
dc.subject.keywordPlusINDOCYANINE GREEN-
dc.subject.keywordPlusPERFUSION MRI-
dc.subject.keywordPlusSYNOVITIS-
dc.subject.keywordPlusCONTRAST-
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0