A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception

Cited 33 time in webofscience Cited 0 time in scopus
  • Hit : 321
  • Download : 0
Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2016-05
Language
English
Article Type
Article
Keywords

STRUCTURAL SIMILARITY; ASSESSMENT ALGORITHMS; JND MODEL; INDEX; INFORMATION

Citation

IEEE TRANSACTIONS ON IMAGE PROCESSING, v.25, no.5, pp.2392 - 2406

ISSN
1057-7149
DOI
10.1109/TIP.2016.2545863
URI
http://hdl.handle.net/10203/209326
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 33 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0