Direct transesterification of wet microalgal biomass for preparation of biodiesel

Cited 19 time in webofscience Cited 21 time in scopus
  • Hit : 581
  • Download : 0
Most conventional processes for algal biodiesel production involve separate lipid extraction steps or require usage of dry biomass that incurs extra cost and an energy intensive drying step. A novel process that involves dehydration of wet biomass via pretreatment with ethanol followed by direct in situ transesterification into biodiesel was investigated in this study. Under mild esterification at 80 degrees C for 30 min, pretreating the wet biomass twice with 3 volumes of ethanol resulted in a nearly four-fold increase of fatty acid ethyl ester (FAEE) yield from 3.04 mg to 11.78 mg, while increasing the ethanol from 1 volume to 10 volumes resulted in a six fold increase of yield from 3.18 to 18.29 mg. The FAEE yield further increased when the esterification reaction was run at higher temperature and longer durations of up to 120 degrees C for 2 h. The overall positive impact of the pretreatment step on the final yield was far greater for milder reaction conditions, which makes the process more attractive in terms of economics and energy savings. In addition, it was found that the yield is unaffected by the choice of alcohol, which means methanol and butanol can also be used for the process. Lastly, it was found that the low concentration of water in the FAEE containing spent ethanol meant that both the solvent and sulfuric acid could be reused to further concentrate the quantity of FAEE in the final product mixture.
Publisher
ELSEVIER SCIENCE BV
Issue Date
2015-11
Language
English
Article Type
Article
Keywords

SUPERCRITICAL ETHANOL CONDITIONS; BIOFUEL PRODUCTION; DIRECT CONVERSION; ALGAE; FEEDSTOCKS

Citation

ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, v.12, pp.405 - 411

ISSN
2211-9264
DOI
10.1016/j.algal.2015.10.006
URI
http://hdl.handle.net/10203/207839
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0