Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation

Cited 66 time in webofscience Cited 53 time in scopus
  • Hit : 231
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorYang, Hee Seokko
dc.contributor.authorLee, Borako
dc.contributor.authorTsui, Jonathan H.ko
dc.contributor.authorMacadangdang, Jesseko
dc.contributor.authorJang, Seok Youngko
dc.contributor.authorIm, Sung Gapko
dc.contributor.authorKim, Deok Hoko
dc.date.accessioned2016-06-07T09:08:26Z-
dc.date.available2016-06-07T09:08:26Z-
dc.date.created2015-06-22-
dc.date.created2015-06-22-
dc.date.issued2016-01-
dc.identifier.citationADVANCED HEALTHCARE MATERIALS, v.5, no.1, pp.137 - 145-
dc.identifier.issn2192-2640-
dc.identifier.urihttp://hdl.handle.net/10203/207768-
dc.description.abstractElectrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that form the extracellular matrix of skeletal muscle tissue are mimicked using nanopatterns created with capillary force lithography. Electron beam deposition is then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, are cultured for 7 d on substrates and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation are assessed. It is found that biomimetic nanotopography enhances the formation of aligned myotubes and the addition of an electroconductive coating promotes myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD, and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue.-
dc.languageEnglish-
dc.publisherWILEY-BLACKWELL-
dc.subjectSKELETAL-MUSCLE FIBERS-
dc.subjectCELL-ADHESION-
dc.subjectIN-VITRO-
dc.subjectMYOBLAST DIFFERENTIATION-
dc.subjectELECTRICAL-STIMULATION-
dc.subjectMATRIX NANOTOPOGRAPHY-
dc.subjectPOLYMER SURFACE-
dc.subjectGROWTH-
dc.subjectREGENERATION-
dc.subjectWETTABILITY-
dc.titleElectroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation-
dc.typeArticle-
dc.identifier.wosid000368144200012-
dc.identifier.scopusid2-s2.0-84953838311-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue1-
dc.citation.beginningpage137-
dc.citation.endingpage145-
dc.citation.publicationnameADVANCED HEALTHCARE MATERIALS-
dc.identifier.doi10.1002/adhm.201500003-
dc.contributor.localauthorIm, Sung Gap-
dc.contributor.nonIdAuthorYang, Hee Seok-
dc.contributor.nonIdAuthorLee, Bora-
dc.contributor.nonIdAuthorTsui, Jonathan H.-
dc.contributor.nonIdAuthorMacadangdang, Jesse-
dc.contributor.nonIdAuthorJang, Seok Young-
dc.contributor.nonIdAuthorKim, Deok Ho-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSKELETAL-MUSCLE FIBERS-
dc.subject.keywordPlusCELL-ADHESION-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusMYOBLAST DIFFERENTIATION-
dc.subject.keywordPlusELECTRICAL-STIMULATION-
dc.subject.keywordPlusMATRIX NANOTOPOGRAPHY-
dc.subject.keywordPlusPOLYMER SURFACE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusREGENERATION-
dc.subject.keywordPlusWETTABILITY-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 66 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0