Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 261
  • Download : 0
Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Issue Date
2016-01
Language
English
Article Type
Article
Keywords

INDEPENDENT COMPONENT ANALYSIS; ALZHEIMERS-DISEASE; MAXIMUM-LIKELIHOOD; BRAIN NETWORKS; DEFAULT-MODE; FMRI; FLUCTUATIONS; CORTEX; DEMENTIA; RECOVERY

Citation

NEUROIMAGE, v.125, pp.1032 - 1045

ISSN
1053-8119
DOI
10.1016/j.neuroimage.2015.10.081
URI
http://hdl.handle.net/10203/207749
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0