THE DYNAMIC RESPONSE OF TURBULENT DIHEDRAL V FLAMES: AN AMPLIFICATION MECHANISM OF SWIRLING FLAMES

Cited 13 time in webofscience Cited 13 time in scopus
  • Hit : 543
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Kyu Taeko
dc.contributor.authorLee, Jong Guenko
dc.contributor.authorQuay, Bryanko
dc.contributor.authorSantavicca, Domenicko
dc.date.accessioned2016-05-16T09:02:24Z-
dc.date.available2016-05-16T09:02:24Z-
dc.date.created2016-03-04-
dc.date.created2016-03-04-
dc.date.issued2011-02-
dc.identifier.citationCOMBUSTION SCIENCE AND TECHNOLOGY, v.183, no.2, pp.163 - 179-
dc.identifier.issn0010-2202-
dc.identifier.urihttp://hdl.handle.net/10203/207572-
dc.description.abstractThe authors analyze the dynamic response of swirl-stabilized flames submitted to upstream acoustic perturbation. Extensive measurements were performed in an optically accessible single-nozzle gas turbine combustor operating on natural gas-air at inlet temperatures of 200 and 300 degrees C over a range of equivalence ratios from 0.55 to 0.70, a range of inlet velocities from 60 to 100 m/s, and swirl angles of 30 degrees and 45 degrees. Temporal oscillations of inlet velocity and heat release rate in the whole flame were measured using the 2-microphone method and global OH*, CH*,and CO2* chemiluminescence emission intensities, respectively, whereas spatially resolved measurement of heat release rate was made using time-averaged CH* chemiluminescence flame images. For the dihedral V flames, amplification characteristic of the flame transfer function was observed. This effect is, unlike the amplification mechanism of a small laminar flame, controlled by the relative ratio of the two length scales, disturbance convective wavelength and flame length. The measured transfer functions show resonance-like behavior when a nondimensional number, the ratio of half the convective wavelength to flame length, approaches unity. It was found that the flame geometric properties, specifically flame angle, also play a crucial role in the flame transfer function. The frequency-dependent behavior of swirl-stabilized flames is closely related to eigenfrequency selection processes at limit cycle pressure oscillations.-
dc.languageEnglish-
dc.publisherTAYLOR FRANCIS INC-
dc.subjectEQUIVALENCE RATIO OSCILLATIONS-
dc.subjectINLET VELOCITY OSCILLATIONS-
dc.subjectLAMINAR PREMIXED FLAME-
dc.subjectCOMBUSTION DYNAMICS-
dc.subjectNONLINEAR RESPONSE-
dc.subjectMODEL-
dc.subjectFLOW-
dc.subjectBURNER-
dc.subjectINSTABILITIES-
dc.subjectDISTURBANCES-
dc.titleTHE DYNAMIC RESPONSE OF TURBULENT DIHEDRAL V FLAMES: AN AMPLIFICATION MECHANISM OF SWIRLING FLAMES-
dc.typeArticle-
dc.identifier.wosid000285197000005-
dc.type.rimsART-
dc.citation.volume183-
dc.citation.issue2-
dc.citation.beginningpage163-
dc.citation.endingpage179-
dc.citation.publicationnameCOMBUSTION SCIENCE AND TECHNOLOGY-
dc.identifier.doi10.1080/00102202.2010.508477-
dc.contributor.localauthorKim, Kyu Tae-
dc.contributor.nonIdAuthorLee, Jong Guen-
dc.contributor.nonIdAuthorQuay, Bryan-
dc.contributor.nonIdAuthorSantavicca, Domenic-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAcoustic excitation-
dc.subject.keywordAuthorAmplification-
dc.subject.keywordAuthorCombustion instabilities-
dc.subject.keywordAuthorFlame transfer functions-
dc.subject.keywordAuthorLean premixed-
dc.subject.keywordPlusEQUIVALENCE RATIO OSCILLATIONS-
dc.subject.keywordPlusINLET VELOCITY OSCILLATIONS-
dc.subject.keywordPlusLAMINAR PREMIXED FLAME-
dc.subject.keywordPlusCOMBUSTION DYNAMICS-
dc.subject.keywordPlusNONLINEAR RESPONSE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusBURNER-
dc.subject.keywordPlusINSTABILITIES-
dc.subject.keywordPlusDISTURBANCES-
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0