Photoinitiated Polymerization-Induced Microphase Separation for the Preparation of Nanoporous Polymer Films

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 301
  • Download : 0
We report on the use of photoinitiated reversible addition-fragmentation chain transfer (RAFT) polymerization for the facile fabrication of cross-linked nanoporous polymer films with three-dimensionally (3D) continuous pore structure. The photoinitiated polymerization of isobornyl acrylate (IBA) in the presence of 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (CTA) and 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator proceeded in a controlled manner, yet more rapidly compared to thermally initiated polymerization. When polylactide-macroCTA (PLA-CTA) was used, PLA-b-PIBA with high molar mass was obtained after several minutes of irradiation at room temperature. We confirmed that microphase separation occurs in the PLA-b-PIBA and that nanoporous PIBA can be derived from the PLA-b-PIBA precursor by selective PLA etching. To fabricate the cross-linked nanoporous polymer, IBA was copolymerized with ethylene glycol diacrylate (EGDA) in the presence of PLA-CTA to produce a cross-linked block polymer precursor consisting of bicontinuous PLA and P(IBA-co-EGDA) microdomains, via polymerization-induced microphase separation. We demonstrated that nanoporous P(IBA-co-EGDA) monoliths and films with 3D continuous pores can be readily obtained via this approach.
Publisher
AMER CHEMICAL SOC
Issue Date
2015-11
Language
English
Article Type
Article
Citation

ACS MACRO LETTERS, v.4, no.11, pp.1244 - 1248

ISSN
2161-1653
DOI
10.1021/acsmacrolett.5b00734
URI
http://hdl.handle.net/10203/207472
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0