An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 278
  • Download : 776
We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects in order to reflect the individual variability of bundle shapes and trajectories over subjects. For each example subject, an atlas is maintained to allow the example data of a subject to be added or deleted flexibly. A voting scheme is proposed to facilitate the multi-atlas exploitation of example data. For conceptual simplicity, we adopt the same metrics in both example data construction and WM tract labeling. Due to the huge number of WM tracts in a subject, it is time-consuming to label each WM tract individually. Thus, the WM tracts are grouped according to their shape similarity, and WM tracts within each group are labeled simultaneously. To further enhance the computational efficiency, we implemented our approach on the graphics processing unit (GPU). Through nested cross-validation we demonstrated that our approach yielded high classification performance. The average sensitivities for bundles in the left and right hemispheres were 89.5% and 91.0%, respectively, and their average false discovery rates were 14.9% and 14.2%, respectively.
Publisher
PUBLIC LIBRARY SCIENCE
Issue Date
2015-07
Language
English
Article Type
Article
Keywords

MASSIVE TRACTOGRAPHY DATASETS; FIBER TRACTS; UNIFIED FRAMEWORK; DIFFUSION MRI; HUMAN BRAIN; SEGMENTATION; TRACKING; ANATOMY; SCLEROSIS; INFANTS

Citation

PLOS ONE, v.10, no.7

ISSN
1932-6203
DOI
10.1371/journal.pone.0133337
URI
http://hdl.handle.net/10203/204014
Appears in Collection
BiS-Journal Papers(저널논문)CS-Journal Papers(저널논문)
Files in This Item
000358837700018.pdf(4.17 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0