Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine

Cited 76 time in webofscience Cited 80 time in scopus
  • Hit : 192
  • Download : 0
An experimental study was conducted to investigate the effects of the proportion between high pressure and low pressure exhaust gas recirculation (HP/LP EGR) on engine operation. The study focused on the characteristics of combustion, emissions, and fuel consumption in a 2.2 L passenger car diesel engine. The experiments were performed under three part-load and steady-state operating conditions. The LP EGR portion was swept from 0 to 1, while the mass flow rate of fresh air and boost pressure were fixed. The results showed that the intake manifold temperature decreased gradually as the LP EGR portion increased due to its greater cooling capability by a longer supply line and an intercooler. However, the required cooling power for the intercooler increased because the LP EGR gas, which has a higher temperature than the fresh air, was induced upstream of the compressor. The lowered intake manifold temperature with the increase of the LP EGR portion led to the prolonged ignition delay of pilot injections, which resulted in a slightly higher peak heat release rate in the main combustion. A higher LP EGR portion showed a lower fuel consumption level than the HP EGR only case because the variable geometry turbocharger (VGT) nozzle opened more widely to maintain the boost pressure, which means a lower pumping loss. Nitrogen oxide (NOx) emissions were also decreased as the LP EGR portion increased due to lowered intake charge temperature. Consequently, it was possible to improve the trade-off relationship between NOx emissions and fuel consumption with the increase of the LP EGR portion under steady-state operating conditions.
Publisher
ELSEVIER SCI LTD
Issue Date
2014-11
Language
English
Article Type
Article
Keywords

EXHAUST-GAS RECIRCULATION; EMISSIONS; COMBUSTION; PERFORMANCE; INJECTION

Citation

APPLIED ENERGY, v.133, pp.308 - 316

ISSN
0306-2619
DOI
10.1016/j.apenergy.2014.08.003
URI
http://hdl.handle.net/10203/201129
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 76 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0