Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetairies for Rapid and Effective Antibacterial Activity

Cited 83 time in webofscience Cited 68 time in scopus
  • Hit : 225
  • Download : 0
Growing microbial resistance that renders antibiotic treatment vulnerable has emerged, attracting a great deal of interest in the need to develop alternative antimicrobial treatments. To contribute to this effort, we report magnetic iron oxide (Fe3O4) nanoparticles (NPs) coated with catechol-conjugated poly(vinylpyrrolidone) sulfobetaines (C-PVPS). This negatively charged Fe3O4@C-PVPS is subsequently encapsulated by poly(3,4-ethylenedioxythiophene) (PEDOT) following a layer-by-layer (LBL) self-assembly method. The obtained Fe3O4@C-PVPS:PEDOT nanoparticles appear to be novel NIR-irradiated photothermal agents that can achieve effective bacterial killing and are reusable after isolation of the used particles using external magnetic fields. The recyclable Fe3O4@C-PVPS:PEDOT NPs exhibit a high efficiency in converting photothermal heat for rapid antibacterial effects against Staphylococcus aureus and Escherichia coli. In this study, antibacterial tests for repeated uses maintained almost 100% antibacterial efficiency during three cycles and provided rapid and effective killing of 99% Gram-positive and -negative bacteria within 5 min of near-infrared (NIR) light exposure. The core-shell nanoparticles (Fe3O4@C-PVPS:PEDOT) exhibit the required stability, and their paramagnetic nature means that they rapidly convert photothermal heat sufficient for use as NIR-irradiated antibacterial photothermal sterilizing agents.
Publisher
AMER CHEMICAL SOC
Issue Date
2015-05
Language
English
Article Type
Article
Keywords

MAGNETIC NANOPARTICLES; POLY( 3,4-ETHYLENEDIOXYTHIOPHENE); POLYPYRROLE NANOPARTICLES; CANCER-THERAPY; BACTERIA; AGENTS; NANOCOMPOSITES; NANOSPHERES; REDUCTANT

Citation

ACS APPLIED MATERIALS & INTERFACES, v.7, no.18, pp.9469 - 9478

ISSN
1944-8244
DOI
10.1021/acsami.5b02737
URI
http://hdl.handle.net/10203/200952
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 83 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0