Sinogram Super-Resolution Using a Space-Variant Blur Matrix in PET

Cited 6 time in webofscience Cited 4 time in scopus
  • Hit : 532
  • Download : 0
Positron emission tomography (PET) images suffer from low spatial resolution. To improve the spatial resolution, we previously proposed a sinogram-based super-resolution (SR) algorithm for a whole-body PET scanner, by assuming space invariant blur. However, since the spatial resolution of a sinogram varies along the radial direction due to parallax error, this algorithm is not appropriate for providing a high-resolution sinogram with reduction of parallax error. In this paper, we propose a novel and efficient sinogram-based SR algorithm that is suitable even for a small animal PET scanner by using space variant blur matrices. In the algorithm, we estimate the space variant blur matrices through a Monte Carlo simulation and use them for the SR process to obtain a high-resolution sinogram. Using a Derenzo phantom and a line source, we demonstrate in a real PET scanner, microPET R4, that the proposed SR algorithm noticeably improves the spatial resolution while alleviating its space variance. By applying the proposed SR algorithm, the full width at half-maximum (FWHM) value reaches 1.2 mm at the system center and 1.63 mm with a considerable parallax error reduction at a radial position of 4 cm.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2013-02
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, v.60, no.1, pp.158 - 165

ISSN
0018-9499
DOI
10.1109/TNS.2012.2227122
URI
http://hdl.handle.net/10203/199028
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0