NONEXISTENCE OF SOLITON-LIKE SOLUTIONS FOR DEFOCUSING GENERALIZED KDV EQUATIONS

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 701
  • Download : 231
DC FieldValueLanguage
dc.contributor.authorKwon, Soonsikko
dc.contributor.authorShao, Shuanglinko
dc.date.accessioned2015-04-15T02:16:55Z-
dc.date.available2015-04-15T02:16:55Z-
dc.date.created2015-04-13-
dc.date.created2015-04-13-
dc.date.issued2015-02-
dc.identifier.citationELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS-
dc.identifier.issn1072-6691-
dc.identifier.urihttp://hdl.handle.net/10203/196103-
dc.description.abstractWe consider the global dynamics of the defocusing generalized KdV equation partial derivative(t)u + partial derivative(3)(x)u = partial derivative(x)(vertical bar u vertical bar(P-1)u). We use Tao's theorem [5] that the energy moves faster than the mass to prove a moment type dispersion estimate. As an application of the dispersion estimate, we show that there is no soliton-like solutions with a certain decaying assumption.-
dc.languageEnglish-
dc.publisherTEXAS STATE UNIV-
dc.titleNONEXISTENCE OF SOLITON-LIKE SOLUTIONS FOR DEFOCUSING GENERALIZED KDV EQUATIONS-
dc.typeArticle-
dc.identifier.wosid000350987400001-
dc.identifier.scopusid2-s2.0-84923368189-
dc.type.rimsART-
dc.citation.publicationnameELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS-
dc.contributor.localauthorKwon, Soonsik-
dc.contributor.nonIdAuthorShao, Shuanglin-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorGeneralized KdV equation-
dc.subject.keywordAuthorsoliton-
dc.subject.keywordAuthorscattering-

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0