Crack detection technique for operating wind turbine blades using Vibro-Acoustic Modulation

Cited 29 time in webofscience Cited 40 time in scopus
  • Hit : 270
  • Download : 0
This article presents a new technique for identifying cracks in wind turbine blades undergoing operational loads using the Vibro-Acoustic Modulation technique. Vibro-Acoustic Modulation utilizes a low-frequency pumping excitation signal in conjunction with a high-frequency probing excitation signal to create the modulation that is used to identify cracks. Wind turbines provide the ideal conditions in which Vibro-Acoustic Modulation can be utilized because wind turbines experience large low-frequency structural vibrations during operation which can serve as the low-frequency pumping excitation signal. In this article, the theory for the vibro-acoustic technique is described, and the proposed crack detection technique is demonstrated with Vibro-Acoustic Modulation experiments performed on a small Whisper 100 wind turbine in operation. The experimental results are also compared with two other conventional vibro-acoustic techniques in order to validate the new technique. Finally, a computational study is demonstrated for choosing a proper probing signal with a finite element model of the cracked blade to maximize the sensitivity of the technique for detecting cracks.
Publisher
SAGE PUBLICATIONS LTD
Issue Date
2014-11
Language
English
Article Type
Article
Citation

STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, v.13, no.6, pp.660 - 670

ISSN
1475-9217
DOI
10.1177/1475921714553732
URI
http://hdl.handle.net/10203/195106
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 29 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0