Inoculum preparation of anaerobic mixed cultures by electric field for dark fermentative hydrogen production

Cited 2 time in webofscience Cited 2 time in scopus
  • Hit : 565
  • Download : 0
The applicability of electric field as a pretreatment technique for inoculum preparation was confirmed in a previous study. In the present work, newly adopted electric pretreatment conditions were statistically optimized for the preparation of inoculum from anaerobic mixed cultures in dark fermentative H-2 production via response surface methodology with a Box-Behnken design. Pretreatment conditions of applied voltage, distance of electrode, and reaction time were chosen as independent variables, while H-2 yield was chosen as the response variable. Overall performance revealed that applied voltage and reaction time were slightly interdependent or significantly interactive influence on H-2 yield, and they were more influential compared with electrode distance on H-2 yield. In the confirmation test, H-2 yield of 1.42mol H-2 per mol hexose(added) was recorded, corresponding with 94.7% of the predicted response value, under applied voltage of 11V, distance of electrode of 5cm, and reaction time of 23min. Although the H-2 yield under electric pretreatment was similar with the heat pretreated yield, the energy consumption efficiency was about 40-fold lower. Therefore, it may be concluded that electric pretreatment is a potent alternate technique for inoculum preparation method in terms of energy consumption and easy applicability in the field with high effectiveness.
Publisher
WILEY-BLACKWELL
Issue Date
2014-12
Language
English
Article Type
Article
Keywords

RESPONSE-SURFACE METHODOLOGY; OPTIMIZATION; PRETREATMENT

Citation

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.38, no.15, pp.2052 - 2056

ISSN
0363-907X
DOI
10.1002/er.3208
URI
http://hdl.handle.net/10203/193799
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0