Static mechanical characteristics of tin-coated fiber Bragg grating sensors

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 452
  • Download : 0
Tin-coated FOG sensors, which can be used to evaluate the maximum strain experienced by host structures through the quantity of residual strain induced by the tin coating, were fabricated by a dipping method. The residual strain development of the tin-coated FBG sensors was quantitatively investigated by performing increased cyclic loading tests, and compared to that of bare FOG sensors. It was found that the quantity of residual strain showed a quadratic relationship with respect to the maximum strain experienced by the tin-coated FBG sensors, while the quantity of residual strain of bare FBG sensors was negligible. Moreover, after increased cyclic loading tests, the tensile failure strength of the tin-coated FOG sensors was additionally examined using Weibull failure statistics and compared to that of bare FBG sensors. The median failure strength of the tin-coated FBG sensors was 111.8% greater than that of the bare FBG sensors, and the Weibull moduli of the bare FBG sensors and the tin-coated FBG sensors were 13.5 and 8.1, respectively. The static mechanical characteristics of the tin-coated FBG sensors, i.e., residual strain development and the failure strength, can be used as a basis and guidelines for the installation of tin-coated FBG sensors into structures in actual applications.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2014-08
Language
English
Article Type
Article
Citation

SENSORS AND ACTUATORS A-PHYSICAL, v.214, pp.156 - 162

ISSN
0924-4247
DOI
10.1016/j.sna.2014.03.023
URI
http://hdl.handle.net/10203/189843
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0