Estimation of multiple sound source directions using artificial robot ears

Cited 9 time in webofscience Cited 10 time in scopus
  • Hit : 677
  • Download : 0
Estimating the direction of a sound source is an important technique used in various engineering fields, including intelligent robots and surveillance systems. In a household where a user's voice and noises emitted from electric appliances originate from arbitrary directions in 3-D space, robots need to recognize the directions of multiple sound sources in order to effectively interact with the user. This paper proposes an ear-based estimation (localization) system using two artificial robot ears, each consisting of a spiral-shaped pinna and two microphones, for application in humanoid robots. Four microphones are asymmetrically placed on the left and right sides of the head. The proposed localization algorithm is based on a spatially mapped generalized cross-correlation function which is transformed from the time domain to the space domain by using a measured inter-channel time difference map. For validation of the proposed localization method, two experiments (single- and multiple-source cases) were conducted using male speech. In the case of a single source, with the exception of laterally biased sources, the localization was achieved with an error of less than 10 degrees. In a multiple-source environment, one source was fixed at the front side and the other source changed its direction; from the experimental results, the error rates on the localization of the fixed and varying sources are 0% and 36.9% respectively within an error bound of 15 degrees.
Publisher
ELSEVIER SCI LTD
Issue Date
2014-03
Language
English
Article Type
Article
Keywords

SOURCE LOCALIZATION; TIME-DELAY; TRACKING

Citation

APPLIED ACOUSTICS, v.77, pp.49 - 58

ISSN
0003-682X
DOI
10.1016/j.apacoust.2013.10.001
URI
http://hdl.handle.net/10203/188670
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 9 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0