Multiphysics Analysis of a Linear Control Solenoid Valve

Cited 17 time in webofscience Cited 31 time in scopus
  • Hit : 562
  • Download : 0
A multiphysics analysis of a linear control solenoid valve coupled with a single degree of freedom (DOF) system is performed to analyze the spool behaviors of the valve. Axially symmetrical simulations are carried out to investigate simultaneously the phenomena of the electromagnetic field and the flow field. The valve spool stroke is determined by the balance between the forces, i.e., the electromagnetic force, hydraulic force, spring force, and damping force. In turn, the spool stroke influences these forces. The arbitrary Lagrangian-Eulerian (ALE) method is employed to describe the dynamic behavior of the system. The simulation results are compared with experimental data to ascertain their accuracy and reliability. In static electromagnetic simulations, a constant electromagnetic force can arise in the linear control solenoid valve because of the leakage of the magnetic flux at the core pole. In the multiphysics simulations, the controllable range of the valve is found to be i = 0.2 - 1.1 A, which is twice the size of that of the electromagnetic simulations. The hydraulic force due to the feedback pressure pushes the spool forward and enables a wider controllable range. Although the supplied pressure improves the system linearity, a critical supplied pressure is required to ensure the linearity of the linear control solenoid valve. The effects of varying the rising time and the maximum external current on the behavior of the valve and its pressure sensitivities are examined. [DOI: 10.1115/1.4023079]
Publisher
ASME
Issue Date
2013-01
Language
English
Article Type
Article
Keywords

FLUID DYNAMIC-ANALYSIS; FLOW FORCES

Citation

JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, v.135, no.1

ISSN
0098-2202
DOI
10.1115/1.4023079
URI
http://hdl.handle.net/10203/174626
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0