Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes

Cited 325 time in webofscience Cited 297 time in scopus
  • Hit : 624
  • Download : 0
Hierarchical SnO2 fibers assembled from wrinkled thin tubes are synthesized by controlling the microphase separation between tin precursors and polymers, by varying flow rates during electrospinning and a subsequent heat treatment. The inner and outer SnO2 tubes have a number of elongated open pores ranging from 10 nm to 500 nm in length along the fiber direction, enabling fast transport of gas molecules to the entire thin-walled sensing layers. These features admit exhaled gases such as acetone and toluene, which are markers used for the diagnosis of diabetes and lung cancer. The open tubular structures facilitated the uniform coating of catalytic Pt nanoparticles onto the inner SnO2 layers. Highly porous SnO2 fibers synthesized at a high flow rate show five-fold higher acetone responses than densely packed SnO2 fibers synthesized at a low flow rate. Interestingly, thin-wall assembled SnO2 fibers functionalized by Pt particles exhibit a dramatically shortened gas response time compared to that of un-doped SnO2 fibers, even at low acetone concentrations. Moreover, Pt-decorated SnO2 fibers significantly enhance toluene response. These results demonstrate the novel and practical feasibility of thin-wall assembled metal oxide based breath sensors for the accurate diagnosis of diabetes and potential detection of lung cancer.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2013-05
Language
English
Article Type
Article
Keywords

VOLATILE ORGANIC-COMPOUNDS; SEMICONDUCTOR GAS SENSORS; ION FLOW TUBE; LUNG-CANCER; SELECTIVE DETECTION; SURFACE-MORPHOLOGY; MASS-SPECTROMETRY; POLYMER BLENDS; SIFT-MS; ELECTROSPUN

Citation

ADVANCED FUNCTIONAL MATERIALS, v.23, no.19, pp.2357 - 2367

ISSN
1616-301X
DOI
10.1002/adfm.201202729
URI
http://hdl.handle.net/10203/174288
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 325 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0