Designed Synthesis of Well-Defined Pd@Pt Core-Shell Nanoparticles with Controlled Shell Thickness as Efficient Oxygen Reduction Electrocatalysts

Cited 73 time in webofscience Cited 0 time in scopus
  • Hit : 387
  • Download : 107
Improving the electrocatalytic activity and durability of Pt-based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well-defined Pd@Pt core-shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4-1.2nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as-synthesized 6nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well-defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94nm Pt shells in a membrane electrode assembly revealed a single-cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low-cost and high-efficient applications of PEMFCs.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2013-06
Language
English
Article Type
Article
Citation

CHEMISTRY-A EUROPEAN JOURNAL, v.19, no.25, pp.8190 - 8198

ISSN
0947-6539
DOI
10.1002/chem.201203834
URI
http://hdl.handle.net/10203/174130
Appears in Collection
CBE-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 73 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0