CREB and neuronal selection for memory trace

Cited 28 time in webofscience Cited 29 time in scopus
  • Hit : 916
  • Download : 915
Despite considerable progress over the past several decades, our understanding of the mechanisms underlying memory encoding, storage, and expression in a complex neural network are far from complete. In particular, how some neurons rather than others are selectively engaged to encode memory remains largely unknown. Using virus-mediated gene delivery into a small subset of neurons in a given network, molecular imaging of neuronal activity, pharmacological perturbation of specific neurons' activity and animal behavior assays, recent studies have begun to provide insight into molecular and cellular mechanisms responsible for the selection of neurons for inclusion into a memory trace. Here, we focus on a review of recent findings supporting the hypothesis that the level of the transcription factor CREB (cAMP/Ca2+-response element binding protein) is a key factor governing which neurons are recruited to a given memory trace. These recent findings open a new perspective on memory trace at the neural circuit level and also raise many important questions. Future studies employing more advanced neurobiological techniques for targeting defined populations of neurons and manipulating their activity in time and space in a complex neural network will give answers to these newly emerging questions and extend our understanding of the neurobiological basis of the memory trace.
Publisher
FRONTIERS RESEARCH FOUNDATION
Issue Date
2013-03
Language
English
Article Type
Review
Citation

FRONTIERS IN NEURAL CIRCUITS, v.7

ISSN
1662-5110
DOI
10.3389/fncir.2013.00044
URI
http://hdl.handle.net/10203/173925
Appears in Collection
BC-Journal Papers(저널논문)BS-Journal Papers(저널논문)
Files in This Item
000317566400001.pdf(1.06 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0