A biofunctionalization scheme for neural interfaces using polydopamine polymer

Cited 97 time in webofscience Cited 0 time in scopus
  • Hit : 356
  • Download : 50
Chemical surface modification of neuron-surface interfaces is essential for the development of biologically active and functional neural interfaces. Different types of surface modification schemes are required to derivatize either electrode or insulator surfaces, which limits the surface chemistry based neural interface design. Herein, we report a novel and powerful approach for modifying neuron-surface interfaces using mussel-inspired polymer ('polydopamine film(polyDA)') for generating effective chemical platforms on both electrode and insulator surfaces simultaneously. We applied polyDAs to common neural interface surfaces (gold, glass, platinum, indium tin oxide, liquid crystal polymer) and subsequently functionalized them by covalently linking biomolecules. The surfaces coated with polyDAs exhibited uniform and reproducible surface properties and they all became neuron-adhesive after linking with poly-D-lysine. In addition, polydopamine-coated microelectrode arrays were readily functional such that spontaneous and evoked neural activities could be recorded from cultured neuronal networks. We have successfully showed that a novel polyDA can be effectively used for the neural interface design. (C) 2011 Elsevier Ltd. All rights reserved.
Publisher
ELSEVIER SCI LTD
Issue Date
2011-09
Language
English
Article Type
Article
Keywords

MICROELECTRODE ARRAYS; NEURONAL CULTURES; LONG-TERM; ELECTRODES; POLYPYRROLE; POLYLYSINE; SURFACES; COATINGS; TISSUE

Citation

BIOMATERIALS, v.32, no.27, pp.6374 - 6380

ISSN
0142-9612
URI
http://hdl.handle.net/10203/173615
Appears in Collection
CH-Journal Papers(저널논문)BiS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 97 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0