Effects of nearfield waves and phase information on the vibration analysis of curved beams

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 378
  • Download : 0
At high frequencies, energy methods such as the statistical energy analysis and the power flow analysis have been popularly used to predict the averaged responses of vibro-acoustic subsystems. Usually, these energy methods ignore flexural nearfield components and phase information, mainly for simplicity. Such assumptions sometimes lead to an erroneous conclusion, in particular for complex structures and at medium frequencies around the Schroeder cutoff frequency. This paper deals with the effects of nearfield waves and phase information at medium to high frequencies by using the ray tracing method (RTM). A curved beam and a coupled beam system were chosen as test examples, which exhibit the typical mode conversion between various types of travelling waves. Propagation of longitudinal, flexural, and torsional waves was studied based on the Euler-Bernoulli beam theory. Analyses of the spatial distribution of vibrational energy quantities revealed that the conventional RTM could mimic the overall trend of the traveling wave solution. However, the results varied smoothly in space due to the neglect of wave interference. By considering the phase information, local fluctuations of vibration energy could be correctly described. It was confirmed that the flexural nearfield plays a significant role near boundaries and junctions. It was also shown that the accuracy of the analysis depends mainly on the modal overlap factor. Similar to other high frequency methods, the results become close to the traveling wave solutions as the modal overlap factor increases.
Publisher
KOREAN SOC MECHANICAL ENGINEERS
Issue Date
2009-08
Language
English
Article Type
Article
Citation

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, v.23, no.8, pp.2193 - 2205

ISSN
1738-494X
DOI
10.1007/s12206-009-0515-0
URI
http://hdl.handle.net/10203/100387
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0