Effect of sensor proximity over the non-conformal hologram plane in the near-field acoustical holography based on the inverse boundary element method

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 423
  • Download : 0
Near-field acoustical holography (NAH) is a useful tool for the identification and visualization of vibro-acoustic sources. In particular, NAH can be applied to many practical sources having irregular shape if the inverse boundary element method (BEM) is employed. Once the relation between the source and the radiated field is defined in the transfer matrix modeled by the BEM, the reconstruction of acoustic parameters on the source surface can be conducted by the multiplication of the inverse transfer matrix and the field data measured over the hologram surface. The usual practical way to measure the field data radiated from an irregular shaped source is to adopt a regular hologram surface, which can be a flat, cylindrical, or spherical shape, for the measurement ease. Then, the hologram surface is not conformal to the source surface and the resulting transfer matrix becomes further ill-posed than the conformal case. To investigate the effect of sensor proximity and distance variability on the reconstruction error, simulation and measurement were conducted for an interior problem comprised of a parallelepiped rigid box with a vibrating end plate. Flat, tilted, and randomized hologram surfaces were adopted in the test. It was shown that the reconstruction error is greatly affected by the conditioning of transfer matrix which is related to the positioning of sensor. To improve the reconstruction accuracy, an investigation was conducted to find proper field points among a large number of overdetermined field points. The number of field data was reduced gradually under various reduction schemes using condition number, effective independence value, and sensor distance. It was demonstrated that the quality of reconstruction result given by the non-conformal measurement can be improved by removing some field points that contribute to the ill-conditioning of the inverse problem. A small improvement of the reconstruction accuracy was observed by reducing the field points in the overdetermined situation. However, further reduction of the field points, becoming an underdetermined situation, yielded a drastic improvement of the reconstruction accuracy.
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Issue Date
2010-05
Language
English
Article Type
Article
Citation

JOURNAL OF SOUND AND VIBRATION, v.329, no.11, pp.2083 - 2098

ISSN
0022-460X
DOI
10.1016/j.jsv.2009.12.013
URI
http://hdl.handle.net/10203/100379
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0