Dependence structure of the commodity and stock markets, and relevant multi-spread strategy

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 439
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Min Jaeko
dc.contributor.authorKim, Sehyunko
dc.contributor.authorJo, Yong Hwanko
dc.contributor.authorKim, Soo Yongko
dc.date.accessioned2013-03-11T21:11:22Z-
dc.date.available2013-03-11T21:11:22Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2011-10-
dc.identifier.citationPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v.390, no.21-22, pp.3842 - 3854-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/10203/100295-
dc.description.abstractUnderstanding the dependence structure between the commodity and stock markets is a crucial issue in constructing a portfolio. It can also help us to discover new opportunities to implement spread trading using multiple assets classified in the two different markets. This study analyzed the dependence structure of the commodity and stock markets using the random matrix theory technique and network analysis. Our results show that the stock and commodity markets must be handled as completely separated asset classes except for the oil and gold markets, so the performance enhancement of the mean-variance portfolio is significant as expected. In light of the fact that WTI 1 month futures and four oil-related stocks are strongly correlated, they were selected as basic ingredients to complement the multi-spread convergence trading strategy using a machine learning technique called the AdaBoost algorithm. The performance of this strategy for non-myopic investors, who can endure short-term loss, can be enhanced significantly on a risk measurement basis. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleDependence structure of the commodity and stock markets, and relevant multi-spread strategy-
dc.typeArticle-
dc.identifier.wosid000295297000024-
dc.identifier.scopusid2-s2.0-80054919296-
dc.type.rimsART-
dc.citation.volume390-
dc.citation.issue21-22-
dc.citation.beginningpage3842-
dc.citation.endingpage3854-
dc.citation.publicationnamePHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS-
dc.identifier.doi10.1016/j.physa.2011.06.037-
dc.contributor.localauthorKim, Soo Yong-
dc.contributor.nonIdAuthorKim, Min Jae-
dc.contributor.nonIdAuthorKim, Sehyun-
dc.contributor.nonIdAuthorJo, Yong Hwan-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCommodity-
dc.subject.keywordAuthorRandom matrix theory-
dc.subject.keywordAuthorNetwork analysis-
dc.subject.keywordAuthorMulti-spread trading-
dc.subject.keywordAuthorAdaBoost algorithm-
dc.subject.keywordPlusCROSS-CORRELATIONS-
dc.subject.keywordPlusFINANCIAL-MARKETS-
dc.subject.keywordPlusTIME-SERIES-
dc.subject.keywordPlusARBITRAGE-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0