
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 1, FEBRUARY 2005 421

Adaptive Neurofuzzy Controller to Regulate UTSG
Water Level in Nuclear Power Plants

Sudath R. Munasinghe, Member, IEEE, Min-Soeng Kim, Student Member, IEEE, and
Ju-Jang Lee, Senior Member, IEEE

Abstract—A data-driven adaptive neurofuzzy controller is
presented for the water-level control of U-tube steam generators
in nuclear power plants. This neurofuzzy controller is capable
of learning the control action principles from the data obtained
using other methods of automatic or manual control. There are
four inputs in the neurofuzzy system, yet only eighty fuzzy rules
involved. Therefore, the fuzzy system is versatile and moderately
compact. The versatility is due to the higher input space dimension
that helps to learn more control principles. The compactness is
due to the number of rules being not too many. A 10-h evaluation
trial of the trained fuzzy controller demonstrated its capability
in regulating the water level under random disturbances and
reference level changes.

Index Terms—Adaptive neurofuzzy system, nonminimum phase
dynamics, Takagi–Sugeno fuzzy model, U-tube steam generator.

NOMENCLATURE

power level (percent);
feedwater flow (kilograms per second);
steam flow (kilograms per second);
water level (millimeters);
reference water level (millimeters);
level error (millimeters);
flow error (kilograms per second);
rated steam flow at power (kilograms per
second).

I. INTRODUCTION

NUCLEAR POWER plants generate electricity by driving
the armature coupled to a steam turbine. The steam is gen-

erated by the u-tube steam generator (UTSG). The water level
of the UTSG should be maintained within safe limits. A too
high of a water level produces wet steam that could damage
the turbine blades; therefore, the turbine trips off. On the other
hand, too low of a water level causes poor cooling of the nu-
clear reactor; therefore, the reactor trips off. In both cases, the
power plant shuts down unintentionally. The water-level regula-
tion of UTSG is a very difficult control problem, and it is one of
the major reasons for unintended shutdowns of nuclear power
plants. The difficulty arises due to reasons such as nonlinearity
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Fig. 1. Simplest schematic of a nuclear power plant with the u-tube steam
generator.

of dynamics, nonminimum phase dynamics (also known as re-
verse dynamics), and unreliable sensor feedback (at low power)
[1]. Therefore, UTSG plants are always looked after and manu-
ally controlled by expert practitioners, whereas automatic con-
trol is considered only for trivial operations.

Thermodynamics of UTSG makes it very difficult to model
the water level theoretically. Even though it were accomplished,
the theoretical models [2]–[5] are too complicated to be con-
sidered as candidates for control system design. Therefore,
Irving [6] developed a simplified linear dynamic model, in
which the model parameters change as the operating point
changes. He also specified those parameters for five specific
operating points. Irving’s model is the most popular UTSG
model in control research, and it assumes that the reverse dy-
namics of feed-water and steam to be identical, which has been
extensively followed by many successive researchers later on
[7]–[9]. Many attempts have been made to design controllers
for the UTSG water level over the last two decades. Na [7]
reported a PID control of UTSG water level, where he used a
model predictive technique (based on standard Irving’s model)
to automatically tune the PID gains. Later on, he developed
an adaptive predictive controller for UTSG [9]. Kothera [10]
presented model predictive control of the UTSG water level
using a further simplified UTSG model. Kim [11] argued that
the nonminimum phase dynamics of feed-water and steam
should not necessarily be identical and distinguished the two
effects, introducing two more model parameters to the standard
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Fig. 2. UTSG dynamics at 50% of the rated power. All graphs show the
deviation form its steady state value at the specified power level. Plant
excitations in (a) �u = �v = 6:6 (kilograms per second) is 1% of the plant
flow rates at 50% rated power.

Irving’s model. It appears that Kim’s model is more general
and could be reshaped to Irving’s model merely by equating
nonminimum phase parameters.

The difficulty of modeling and control of UTSG water level
inspired researchers to investigate model-free (data-driven)
techniques such as fuzzy and adaptive learning systems. Fuzzy
reasoning [12]–[14] can be used to interpret uncertain incom-
plete data in order to make an intelligent guess of the desirable
control action, which is exactly what is needed where there is

TABLE I
UTSG MODEL PARAMETERS

Fig. 3. Two PI controller system to regulate UTSG water level.

no accurate model (therefore no proper controller either) of the
process. The plant, the controller, or the combined closed-loop
system can be modeled by a fuzzy system in terms of an if-then
rule-set. For complex systems, the rules can be automatically
generated by grid partition of the input product space or by
identifying input space clusters [15], [16]. The if-then rules, in
the form of Takagi–Sugeno (TS) fuzzy inference [17], actually
model-specific local behaviors of the plant, and the weighted
sum of the rule outputs, approximates the actual output of the
plant. Therefore, a TS fuzzy systems is a linear multimodel
representation of a complex, nonlinear plant [18], where plant
dynamics can be revealed by inspecting the characteristics of
the individual TS rules. The transparency and simplicity of
the TS rule base can be improved by further refining the rule
base by combining similar rules together and optimizing the
important rules [19]–[22]. Cho [8] developed a fuzzy controller
for UTSG, where he used two inputs with isosceles triangular
membership functions in the premise (input) part and singletons
in the consequent (output) part. He used Irving’s model to de-
rive the fuzzy control rules by looking at a desired phase-plane
trajectory of water level against flow mismatch . Na [25]
proposed a fuzzy controller based on Irving’s model, where he
used a genetic algorithm to generate membership functions and
rules.

A predominant amount of UTSG controller designs to date
have considered identical reverse dynamics for feed-water and
steam flows to simplify modeling. This is a good approximation,
yet not necessarily true in general. We argue that this assump-
tion not be made in UTSG modeling so that the controller is
given more degrees of freedom in regulating a general UTSG
plant, including those where this assumption is indeed true. The
results so far reported on UTSG controller performance have
been limited to a rejection of a single predetermined steam dis-
turbance, or a single level tracking without the presence of dis-
turbances. These scenarios are ideal, whereas in real practice the
reference level changes, and disturbances occur independently
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Fig. 4. Simulation under PI control at p = 50%. During first 5100 s, the operator changes the reference level within 80–120 mm, and during the next 7200 s,
reference level changes randomly. Random disturbances are introduced in the steam flow at all times. The time interval between consecutive disturbances is 200 s,
and between consecutive reference changes is 300 s. The magnitude and sign of disturbances and reference changes are also randomly determined.

and frequently overlap each other so that the controller stability
becomes a worried concern. However, it is extremely difficult to
provide a hard stability proof for intelligent controllers; there-
fore, a prolonged simulation is necessary to demonstrate their
stable operation.

In this work, we make efforts to fill some of the mentioned
voids in UTSG literature. One motivation is to accommodate
nonidentical reverse dynamics in UTSG modeling. The other

motivation is to construct a data-driven intelligent controller
(an adaptive neurofuzzy controller). The training data for this
controller are taken form a prolonged UTSG simulation using
few PI controllers that are specific to operating power. We uses
Kim’s UTSG model [11] in which reverse dynamics of feed-
water and steam are not identical. The neurofuzzy controller
has five inputs, 80 TS fuzzy rules, 532 parameters, and one
overall output, and it was trained by the ANFIS hybrid algo-
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rithm (see the Appendix) [23]. The trained fuzzy system was
used to regulate the UTSG water level under conditions similar
to actual UTSG operations, where steam disturbances and ref-
erence level changes occur randomly, while overlapping each
other. The 10-h simulation of the plant under these conditions
provides convincing results about the stability of the fuzzy con-
troller, and the low root mean square (RMS) error of the water
level verifies its capability.

II. UTSG

In nuclear power industry, u-tube steam generator is a
major component, where the steam is generated. The simplest
schematic of the overall nuclear power plant is shown in Fig. 1.
The heat generated at the nuclear reactor is taken away by
forced-circulated water in the primary circuit. This water is
contaminated by radioactive particles; therefore, the primary
circuit is isolated from the rest of the system. The primary
circuit has an inverted u-tube bundle submerged in the water
column of the steam generator, where the heat transfer takes
place from primary circuit to secondary circuit that makes
secondary circuit water reach the state of bulk-boiling. The
generated steam of the secondary circuit (with more than 99.9%
dryness) is sent to the turbine, which is coupled to an armature
to generate electricity.

As shown in Fig. 1, the water level of the UTSG should be
maintained within its lower and upper limits. Failure to maintain
water level would lead to the following serious consequences
including unintended plant shutdowns and system damage [1]:

1) If low water level exposes the u-tubes, the heat transfer
from the primary circuit to the secondary circuit will
not take place efficiently. Consequently, primary circuit
builds up heat within itself, which causes the reactor to
trip off.

2) If the water level rises too high, the steam will contain
more moisture (dryness ). And, the wet steam
may damage the turbine blades; therefore, turbine trips
off.

Thus, it is extremely important that the water level of the
UTSG be regulated within its limits. At present, a significant
percentage of plant shutdowns and system unavailability are re-
portedly due to failures in UTSG water level control, which is
a very difficult problem as UTSG dynamics shows high non-
linearity and nonminimum phase behavior that can be approxi-
mated by the following linearized model for a given power level
[11]:

(1)

where the four terms on the right-hand side (RHS) are mass
capacity effect, nonminimum phase effect of feed-water, non-
minimum phase effects of steam, and the effect of mechan-
ical oscillation, in that order. The model parameters of (1), i.e.,

are given in Table I for a generic
plant. These parameters were originally published by Irving [6]
for an ideal plant. Fig. 2 graphically illustrates UTSG dynamics

TABLE II
SIMULATION CONDITIONS OF THE UTSG

TABLE III
NEAR-OPTIMUM PI GAINS FOR SPECIFIC POWER LEVELS

given in (1) when the plant operates at 50% of its rated power.
The reverse dynamics due to feed-water change and steam
flow change are shown in Fig. 2(c) and (d) by , and

, respectively. The two reverse dynamics have been assumed
identical (except for sign) in [7] and [9]. In [7] and [10], the me-
chanical oscillation effect [Fig. 2(e)] has been neglected. These
assumptions are helpful to simplify UTSG modeling, however,
at an expense of loosing credibility to represent actual plants. In
this paper, we consider mechanical oscillation effect as well as
nonidentical reverse dynamics for steam and feed-water, there-
fore, to make the model more accurate in representing actual
UTSG plants.

The UTSG water level control is inherently a very difficult
problem due to the following two particular reasons [1]:

1) Nonminimum phase dynamics (known as “swell” and
“shrink” in UTSG literature): “Swelling” behavior refers
to a temporary increase in water level in response to
a reduction of liquid water mass in the steam gener-
ator. “Swelling” is momentarily observed when steam
flow rate undergoes a sudden increment
[Fig. 2(a) and (d)] or feed-water flow rate undergoes a
sudden drop . “Shrinking” behavior is the
exact opposite of “swelling,” and it refers to a temporary
decrease in the water level, against an increase of the
liquid water mass in the steam generator [Fig. 2(a) and
(c)]. These behaviors, though they last momentarily, are
in exact opposition of the response one would expect
upon the nature of steam or feed-water flow changes
introduced to the system. These reverse behaviors make
it very difficult to regulate the UTSG water level.

2) Errors of flow rate measurements: The most critical and
widely used feedback signals are steam flow rate and
feed-water flow rate . It is more often the case that these
signals are not accurate enough during startup transients,
and at low power operations. Under these conditions,
flow rates are small in magnitude, and the process noise
corrupts them beyond the limit of being useful feedback
signals.
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Fig. 5. Takagi–Sugeno-type adaptive neurofuzzy system.

III. DESIGNING THE ADAPTIVE NEUROFUZZY CONTROLLER

Using two PI controllers, one for level error control and
another one for the flow error control, it is possible to regulate
the water level at all specific power levels given in Table I.
The structure of the two PI controllers is shown in Fig. 3,
whereas the PI control law of the two controllers are given by

(2)

(3)

And the water-level adjustment (increment or decrement) is
determined by summing the outputs of the two controllers as
follows:

(4)

Using this PI control structure, a prolonged simulation of the
UTSG plant was carried out under the conditions given in
Table II, and the results are shown in Fig. 4. Starting from
the beginning of the simulation, the reference water level was
intentionally changed in 5-mm steps in every 300-s intervals,
over the entire range of 100 mm 120 mm 80 mm 100
mm, which takes 5100 s in total. Then, another 2 h was given
for random reference changes. At all times, random steam
disturbance were introduced according to the specifications
given in Table II.

The total duration of one simulation epoch is, therefore,
12 300 s. This simulation was iteratively carried out while intu-

itively tuning PI parameters of the level error controller, i.e., ,
and , and the nearly optimal settings shown in Table III were
found. The PI gains for flow error controller, i.e., and ,
were set to acceptable values and kept unchanged for the sake of
simplicity and reduced dimensionality in intuitive tuning of the
control gains. There are six random number sequences in this
simulation, i.e., three for water level change (decision, magni-
tude, and sign), and three for steam disturbances (occurrence,
magnitude, and sign), which were not maintained constant in
repetitive simulations during gain tuning process. Therefore,
every iteration generates a different random number sequence.
We argue that it does not affect the gain tuning process because
the simulation duration is sufficiently long (12 300 s) that the
RMS error of the water level would not be affected as a result of
not using constant random number sequences in each iteration.
On the other hand, using different random number sequences
in successive simulation epochs is essential for a generalization
of the tuning process. The following data have been obtained
under the control of the tuned PI controllers:

1) level error, ;
2) percentage flow error, ;
3) accumulated level error, ;
4) accumulated flow error, ;
5) percentage change in flow rate, .
The same data profiles are graphically shown in Fig. 4.

Similar data were obtained for all specific power levels
, and these data were used to train a

Takagi–Sugeno-type adaptive neurofuzzy controller [23] with
trapezoidal membership functions as shown in Fig. 5. This
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Fig. 6. Fuzzy controller performance at specific power levels. (a) 5%, (b) 15%, (c) 30%, (d) 50%, and (e) 100%.

neurofuzzy controller has five inputs—the four data sequences
of the first four subframes in Fig. 4 and the power level ,
whereas its desired output is the %feed-water change given
in the fifth subframe in Fig. 4. The Takagi–Sugeno fuzzy
inferences [17] used in the neurofuzzy system is described as
follows: : if is and is and is and
is and is then

(5)

The output of the TS fuzzy system would be the weighted
sum of the individual rule outputs as given by

(6)

where is the number of
rules as , and are the number
of fuzzy labels used for the corresponding inputs. The fuzzy
system output for is compared with the corresponding PI
controller output for , which is given in the training data in
Fig. 4, and the mismatch is used to adapt the consequent parame-
ters , , , , , and premise parameters , , ,

; ; , that specify

the trapezoidal membership functions of , , , . This
adaptation algorithm was proposed by Jang [23], which uses
least squares estimates of the consequent parameters, and gra-
dient-based error backpropagation [26] for adapting premise
parameters (see the Appendix). We have used two member-
ship functions, each for the first four inputs, which were ini-
tialized by grid-partitioning of the training data, whereas the
fifth input (i.e., power) was assigned five membership func-
tions, which were handcrafted so that they have unity mem-
bership at the respective singleton values of power. Therefore,
the number of rules is limited to 80, which is a manageable
size for the neurofuzzy controller. In the premise part, the 13

trapezoidal membership functions require
52 parameters, whereas in the consequent part the 80

rules need 480 coefficients. The
adaptation of the neurofuzzy system takes about 30 min/epoch
on a 1.5-GHz 256-MB RAM Pentium IV system for a dataset of
12 300 entries. Training showed a very little error starting from
the initialization (epoch ); thus, we stopped training after 15
epochs, and the trained fuzzy controller was used to regulate the
UTSG plant for a 10-h duration.

IV. RESULTS

The trained fuzzy controller demonstrated comparable per-
formance to PI controller under the plant simulation conditions
described in Table II, for a prolonged duration of 10 h. The first
1 h of the plant behavior at each power level is shown in Fig. 6.
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The trained fuzzy controller is able to track random changes
in reference water level satisfactorily, while rejecting random
steam disturbances. The initial trapezoidal membership func-
tions of the neurofuzzy network are as follows:

and all consequent parameters were zeros. The initial member-
ship functions were generated by grid-partitioning of training
data, and it has zero membership value on either side of the
training data distribution. This causes problems if an input vari-
able swings beyond the range that grid-partitioning has already
specified by looking at the training data. Under such a situation,
control action may fail, and the plant may be destabilized. To
eliminate this problem, the initial membership functions were
stretched on either side as follows:

The membership functions for power level were handcrafted
as , , ,

, and using the known
power levels. The boldface represents the modified premise
parameters. Then, the neurofuzzy controller was trained for 15
epochs that showed a negligible error right from the beginning.
The premise parameters of the trained fuzzy controller were
rule1 ,
rule2 ,
rule3
rule80 . The
RMS errors of UTSG water-level control under PI and fuzzy
controllers are listed in Table IV.

The neurofuzzy controller is trained to learn the principle of
PI control. The training data are produced by five specific PI

TABLE IV
RMS ERROR WITH PI CONTROL AND NEUROFUZZY CONTROL

controllers at each power level. Plant dynamics and PI gains un-
dergo significant variations on the operating power. Therefore,
neurofuzzy controller learns the PI control, as it sees through
the actions of all five PI controllers. Therefore, it may perform
differently (better or worse) compared to PI controller at a spe-
cific power level. However, according to the results, the trained
fuzzy controller performance is significantly comparable to the
PI controller at all power levels.

In comparison with other reported results, steam disturbances
have not been included in [10], whereas [7] and [9] have simu-
lated only a single change in reference water level and a single
steam disturbance that are perfectly isolated on the time line. It
is, however, important to test how a UTSG controller performs
when these events overlap, which is more likely the realistic sit-
uation. In our work, we have dealt with random disturbances and
random changes in the reference water level, in that the random-
ness appears in the instance of occurrence, magnitude, and sign
of these events. It makes the simulation in this paper more real-
istic, and that the results more trustworthy.

V. CONCLUSION AND FURTHER WORK

An adaptive neurofuzzy controller has been presented for the
UTSG water-level control. This controller learned PI control
principle and delivered satisfactory performance at all specific
power levels. No simplifications were made in the UTSG model
so that to accurately represent the realistic plant. System sta-
bility was demonstrated by carrying out simulations for pro-
longed durations under the conditions similar to real plant oper-
ations. Least number of membership functions (two) were used
for the sake of compactness; however, sufficiently many input
variables (five) were used for the versatility of the neurofuzzy
controller. This proposed data-driven neurofuzzy controller can
be trained off-line for any UTSG plant, given the actual data.

For further work, the fuzzy rules that are less important and/or
redundant will be identified and removed to make the fuzzy con-
troller more compact and transparent. We also plan to acquire
actual UTSG data to train the neurofuzzy controller. How to out-
perform the original controller is another problem that we are
working on in that we intend to modifying the PI data before
they are used for training. This way, the controller is expected
to outperform the original PI controller that is used to generate
training data. In particular, we try to remove some high-fre-
quency components in the PI output, i.e., %flow rate change, and
use the filtered data as the target for fuzzy controller training.
This way, we expect to find out an optimum damping level for
the flow-rate change by trading off the speed of level tracking
with nonminimum phase effect of feed-water flow. We hope that
this will produce a new training method for data-driven UTSG
controllers and other nonminimum phase systems.
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Fig. 7. Takagi–Sugeno-type adaptive neurofuzzy system with two inputs and one output.

Fig. 8. Fuzzy grid partitioning of the input space.

APPENDIX

HYBRID LEARNING FOR ADAPTIVE NEUROFUZZY INFERENCE

SYSTEMS (ANFIS)

An adaptive network (neurofuzzy) of two inputs and one
output is shown in Fig. 7. The network has five layers, .
The input vector is denoted by , and is the output.
The desired output is . Fig. 8 shows the four subspaces of
the fuzzy partitioning of input space by use of trapezoidal
membership functions. These four subspaces are modeled by
four TS rules that produce outputs ; as shown
in Fig. 7, and the summation of these outputs determine the
overall output of the network. The adaptive parameters of the
network are of two categories–premise (input) parameters and
consequent (output) parameters. The parameters that specify
the membership functions are the premise parameters, i.e., ,

, , ; . The coefficients ,
, of Takagi–Sugeno fuzzy rules, ;

are the consequent parameters. Each layer of the
network functions as follows:

1) Given the input, vector first layer calculates the
membership functions , , , .
For trapezoidal membership functions, is calcu-
lated as follows:

if
if

if
otherwise.

(7)

The other three memberships can be calculated in the
same way.

2) The second layer calculates the firing strengths of rules

(8)

3) The third layer calculates the normalized firing strengths

(9)

4) The fourth layer calculated the outputs of the TS rules

(10)

5) The fifth layer determined the overall output of the net-
work

(11)

A. Adapting Consequent Parameters by Least Squares
Estimate

The forward pass of the network adapts the consequent pa-
rameters , , . For this, (11) is rewritten as
follows:

(12)
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For a batch of training data,

(13)

where , . The consequent parameters ,
, can be estimated in the best possible way by minimizing

the square error of (13).

B. Adapting Premise Parameters by Error Backpropagation

The membership functions (premise parameters) are adapted
in such a way that the gradient of the square error with respect
to firing strengths of each rule descends iteratively. For the same
input output training dataset mentioned above, the output square
error for the th element is

(14)

and its gradient with respect to the normalized firing strength of
each rule is

(15)

By substitution from (11) we have

(16)

The gradient considering the entire training dataset is

(17)

Then, the required incremental change of the firing strength is

(18)

where is the learning rate.
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