
A Simple and Fast Scheduler for Input Queued ATM Switches

Hyojeong Song, Lillykutty Jacob
Dept. of Comp. Sci., KAIST, Taejon 305-701, Korea

{hjsong,lilly} @camars.kaist.ac.kr

Hyun-Gon Kim
LG Information & Communications Ltd., Anyang 43 1-080, Korea

Boseob Kwon
Electronics and Telecommunications Research Institute, Taejon 305-350, Korea

Jai-Hoon Chung
Samsung Electronics Co., Ltd., Seoul 138-240, Korea

Hyunsoo Yoon
Dept. of Comp. Sci., KAIST, Taejon 305-701, Korea

Abstract

Man). ‘outp;it-sclzedLiling ’ algorithins have been pro-
posed for improving the perforinnrice of input queued asjn-
chronoiis transfer mode (ATM) switches, whereby cells from
different randonz-access input queues destined for the suine
output cun be scheduled for nori-conjicting transmissions.
An optimal output-scheduling algorithm, one with the $111

coordination of transmissions to all outputs, can approach
the peforrnarice of output queueing. Because of the con-
plexity of such an optimal scheduler; output schedulers pro-
posed in the literature ure without such coordination. We
propose U simple waj to incorporate such a $ill coordi-
nation in output-scheduling bvitli much siinple hardware.
Throughput of the input qiieiieirig switch thus approaches
that of the output queueing switch, without speed-up, in-
piit/oiitput grouping or complicated hardrvare. To make the
output-scheduling algorithin fast enough, we incorporate
parullelisin arid pipelining. We perforin detailed siniulation
studj ofthe perforiiiance of the input queueing switch with
the proposed sckediiling algorithin.

1. Introduction

For an internally nonblocking ATM switch, buffering is
required to resolve the contention that occurs when multi-
ple ATM cells simultaneously arrive at different input ports
destined for the same output port. Only one cell at a time
(i.e., in each time slot) can be transmitted over an output

link; the rest must be temporarily stored in a queue. Output
queueing yields the best performance possible in a switch:
each input/output line of an output queued switch can be
loaded upto 100%. However, the hardware cost of output
queueing is prohibitive for all but the smallest switches. We
restrict our attention to input queued switches.

It is well known that when FIFO queues are used, the
throughput of an input queued ATM switch with independent
and uniform input traffic can be limited to just 58.6% when
the number of inputs/outputs N is large [11. When arrivals
are correlated, the throughput can be even lower [2]. The
throughput is limited because acell can be held up by another
cell queued ahead of it that is destined for a different output.
This phenomenon is known as HOL blocking.

Numerous papers have indicated that by using non-FIFO
(random-access) input queues and using good scheduling
policies, effect of HOL blocking can be reduced and much
higher throughputs can be obtained [1, 3, 4, 5 , 6, 71. With
random-access queues, an input may transmit to any one of
the outputs for which it has a queued cell, with the constraint
that each input can send at most one cell and each output can
receive at most one cell, in each time slot. Random access
input queues lead to forwarding cells through the switch
fabric in an order different from the order in which they
arrived. However, the switch maintains the cell sequence
within each ‘flow’, since only the first queued cell in each
flow is eligible to be transmitted through the fabric; where a
flow is a stream of cells between a given input-output pair.

The difficulty is in devicing an algorithm that is both fast
enough to schedule cells at high link speeds and efficient

0-8186-7901-8/97 $10.00 0 1997 IEEE
260

enough to deliver high link throughput, combined with min-
imal hardware complexity. Hluchyj et al. [11 suggested an
iterative method in which an input that loses the first round
of the contention tries with the second cell in its queue on the
second round, and so on. After some number of iterations
IC (called window size), the winning cells from the vari-
ous inputs are sent through the switch fabric to the outputs.
This scheme has a growth problem because it is a sequential
procedure, meaning that the speed of the algorithm is pro-
portional to both the number of input ports and the number of
iterations. In the parallel iterative matching (PIM) algorithm
[3] and in the SLIP-IRRM (iterative round robin matching)
algorithm 141, all inputs and outputs perform iterations in
parallel, where each iteration involves three phases: request,
grant and accept phases. The request, grant, and accept
proptocol is implemented by running a wire between every
input and output, which requires scheduling logic hardware
that grows as O(N2) . Also, though these algorithms provide
high throughput (asymptotically 100%) for independent and
uniform traffic, they perform less well and are unable to sus-
tain high throughput if the traffic is not uniformly distributed
over outputs, or if the arrival process is not Bernoulli.

Regarding efficiency, an optimal scheduling algorithm
could approach the performance of output queueing but
would require coordination of transmissions to all the out-
puts. Because of the complexity of such an optimal sched-
uler, algorithms have been proposed without such coordi-
nation, i.e., each output is allowed to schedule the trans-
missions independently of the others, thus leading to much
simplified hardware [S , 6, 71.

Our approach is to use advance reservation (i.e., reser-
vation in an earlier time slot than the one in which the cell
is actually transmitted to the output port), parallelism and
pipelining inorder to achieve the performance of optimal
scheduler (with full coordination of transmissions to all the
outputs), that is both fast enough to schedule cells at high
link speeds and less complicated to be implemented. Fig. 1
shows a simplified block diagram of an input queueing ATM
switch 17, 81. The switch is composed of three functionally
independent components: the input buffer (IB) modules,
the contention resolution (CR) module, and a self-routing
nonblocking space-division switch.

An approach incorporating both advance reservation and
pipelining was used in [8] for scheduling in an ATM switch
of the same configuration as Fig. 1 . The basic scheme pro-
posed there is unfair in the sense that the throughputs from
various input ports differ by significant amounts. To solve
this fairness problem, a ‘barrel-shifter’ is used to cycle the
sequence in which the inputs are scheduled, which makes
the implementation more complex. Also, switch through-
put, cell delay and cell loss rate are all sensitive to the
parameter M , the frequency with which the barrel-shifter is
operated (called rotation period).

I

+--+o Buffer Module - - - - - -

- j -T+j Division Space

Switch

-0

- 1

- N-1

Figure 11. Simplified block diagram of an input
queueing ATM switch

The scheduler proposed in this paper has inherent fairness
property without any additional hardware such as barrel-
shifter. Also, it is fast and highly efficient in the sense
that it provides as high a throughput as 96% for feasible
implementations. In Section 2 the different aspects of the
scheduler are described in detail. Section 3 presents the
details of the simulation study with the new scheduler, and
Section 4 gives the conclusion.

2. Cyclic Reservation Interval Scheduler

In the detailed architecture of the switch with a config-
uration as shown in Fig. 1, each IB module consists of a
random-access buffer, a send buffer and an IB controller
[8]. ATM cells that arrive at each IB, in a synchronous, time
slotted fashion, are stored in the order of their arrival, in
the random access buffer. Using information from the IB
controllers, the CR module schedules, in advance, the trans-
mission times of cells in the random access buffers. Each
scheduled cell (that has got output port reservation) is trans-
ferred from the random-access buffer to the send buffer in
that IB module. The cells stored in a send buffer are shifted
forward by one position, in every time slot, and the cell
in the HOL position will be transported across the switch
fabric. A scheduled cell is stored at such a location in the
send buffer that, precisely at the time slot for which it has
got the reservation of the desired output (i.e., at the sched-
uled transmission time of that cell), it will reach the HOL
position of the send buffer and will be transported across the
switch fabric.

2.1. Reservation Procedure

First, we define some terminologies. By ‘time t’ in our
description, we mean time slot t.

261

Definition 1 Reservation time of an input port i at time
t is de$ned as the time at which the cell, f o r which the
reservation is made at time t, is actuallj transmitted across
the switch fabric, and is denoted by R,(t).

Definition 2 Reservation interval of an input port i at time
t is R,(t) - t.

The reservation interval (RI) of each input port determines
the reservation priority of that input port. This point will
become clear later, with the description of the reservation
scheme.

Definition 3 The first reservation input port (FRP) at a
given time t is the input port i with the largest reservation
interval R,(t) among all the inputports (i E {O, 1 , . . . , N -
1 1) .

Definition4 The last reservation input port (LRP) at a
given time t is the input port i with the smallest reser-
vation interval R,(t) among all the input ports (i E
(0, 1 , . . . , N - l}).

In order to provide fairness, the reservation interval of
each input port is allowed to change from time to time in
a cyclic manner and hence it is called cyclic reservation
interval (CRIJ. For specific reason, which will be explained
next, the cyclic reservation interval of input port i at time t
is given by the relation

where
O < i < N - I ,

GCD(T + 1, N) = 1, T # qN for any q E I

The CR module of the switch has N reservation tables
(RTs) in it, one RT for each IB [8]. Each RT consists of
N reservation state entries to indicate the reservation states
(i.e., the availability or nonavailability) of N output ports
for a future time slot; a ‘0’ indicates that the corresponding
output port is available and a ‘ 1 ’ indicates that it is not avaii-
able. Output port address of the cells in the random-access
buffer of IB, , from the HOL position upto a maximum of
d (called ‘search depth’), are matched against the available
output ports in RT,. If a match is found, the corresponding
entry of RT, is changed from 0 to 1 and the matching cell is
transferred from the random-access buffer to the send buffer
in IB,. In the send buffer, the cell is stored at the register
entry corresponding to the value of CRI,(t) , so that, after
CRI,(t) number of time slots, it will reach the HOL position
of the send buffer and will be transported across the switch
fabric. In the random-access buffer, all the subsequent cells

(those were behind the cell which has just been transferred
to the send buffer) are shifted forward to occupy the va-
cant position. Schematic representation of the structure and
operation at IB,-RT, pair is given in Fig. 2.

I Random Access Buffer Send Buffer I
I

r
N-1 * * * 2 1 0

IB Controller

l

RT

- Switch Fabric

Figure 2. Schematic representation of the
structure and operation at IB,-RT, pair

With the above reservation mechanism, additional hard-
ware is necessary for the IB module than proposed in [8],
in order to maintain cell sequence within a flow. Since the
reservation interval of an input port changes cyclically from
time to time, it is possible in our scheme that, two cells,
from the same input port and with the same destination ad-
dress, to have the assigned transmission times in an order
that reverses the order in which they arrived at the IB. An
exchange of the storage positions of these cells within the
send buffer is necessary. This can be done with minimal
hardware modification. The problem of maintaining cell se-
quence within a flow using extra hardware has been reported
in other schedulers also [9, 71.

2.2. Parallelism

We have mentioned in the description of the reservation
procedure that, in each time slot, output port address of the
cells in the random-access buffer of IB,, from the HOL
position upto a maximum of d, are matched against the
available output ports in RT,. All cells within the search
depth d are matched simultaneously. However, only the
oldest cell with a matching is selected and transferred to
the send buffer. The hardware implementation details of
such an IB controller is presented in [8]. The advantage of
the parallel searching scheme is that the scheduling speed
is invariant to the value of d; a large value of d has great
impact on the performance of the switch as shown in the
next section. Ofcourse, d cannot be too large as it increases
the hardware complexity of the IB controller. The concept
of sending many requests simultaneously by an input port,

262

in a single time slot, has been used in several schedulers
[3,5,6,9,71.

2.3. Pipelining Technique

In each time slot, reservation mechanism proceeds at
each IB-RT pair independently and in a pipelined manner.
Reservation state entries which are modified as described
in the reservation procedure are cyclically shifted from one
RT to another. In each time slot t , all entries in the RT
associated with the FRP at time t are set to 0 before the
reservation mechanism for that IB-RT pair takes place;
similarly, entries in the RT associated with the LRP at time
t are discarded after the reservation mechanism for that IB-
RT pair has been finished.

The sequence in which this cyclic shifting occurs is dif-
ferent for different values of T and N . For a given T and for
a fixed N , we can obtain the relationship between i and j ,
where the entries of RT, are shifted to RT,, in the manner
described next.

Since input port j (resp. i) makes a reservation at time t
(resp. t + 1) for the actual cell transmission at R3(t) (resp.
R,(t + I)) , if there is a matching in the respective case, we
have

R3(t) = R, (t+ I)
t + CRI,(t) = 1 + 1 + CRI,(t + 1)

2.4. Cyclic Reservation Interval Algorithm

Here, we summarise the sequence of operations which is
performed at. IBi-RTi pair, at time t . The same sequence of
operations is performed at all IB-RT pairs simultaneously,
in every time slot.

1. The cyclic reservation interval of input port i , CRI, (t) ,
is calculated according to Eqn. (1) .

2. If CRIi(t) = N - 1 , all the entries of RT, are set to
0 (CRI,(t) = Ar - 1 means that the input port i is the
FRP at time t) .

3. Output port address of up to a maximum of d cells from
the HOL position, in the random-aczess buffer of IB,,
are matched against the vacant output port reservation
state entries in RT,. If a matching is found, then the
corresponding entry of RT, is made 1 .

4. If CRI,(t) = 0, the entries of RT, are discarded
(CRI,(t) = 0 means that the input port i is the LRP
at time t) . Otherwise, the entries of RT, are shifted to
its successor RT. The entries of RT, are replaced by
those of its predecessor.

5. The matching cell (if any) is transferred from the
random-access buffer to the send buffer in IB,, and
is stored at the location corresponding to the value of

t + ((CRI,(O) + 7 t) mod N) = t + 1 + ((CRI,(O) + T (t + I)) mod N)

J + ~t + k N = (L + I + T (t + I)) for some k E I
CRI,(t) . If there is a cell with the same output port
address behind this location, then an exchange of the

j + k N = (~ + I + T)
j = (it 1 + T) mod N

Step 2 follows from Def. 2 and steps 3 and 4 follow from
Eqn. (1).

Observation 1 The sequence satisfying Eqn. (2) includes
all the N RTs, provided GCD(r + I , N) = 1.

Proof. Using Eqn. (2) , we get the AT successive RT
indices as

i, (i + T + I) mod N, (i + 2(7 + 1)) mod Ai;
..., (i + (A7 - I)(T + I)) mod N (3

If these N indices are not all different, then for some 0 5
j , k 5 N - 1 , j # I C

(z + j (~ + 1)) mod N = (z + k(T + I)) mod AT

i.e.

By the cancellationproperg [IO], when GCD(T+ I , hr) =
1 , we have

(j (~ + 1)) mod N = (k (7 + I)) mod A’

j mod N = k mod N

which contradicts the assumption that j # I C . Therefore,
all the N RT indices in the sequence given by Eqn. (3) are
distinct.

storage positions of these cells within the send buffer
is done, in order to maintain cell sequence within that
flow.

(2)

6. If a cell is transferred to the send buffer, then all the
subsequent cells in the random-access buffer are shifted
forward to occupy the vacant position.

Next, we define two properties of the cyclic reservation
interval scheduler which ensure the correctness of the dis-
tributed algorithm, and guarantee efficiency.

Property 1 .At any given time t, no two input ports a arid J

(i # j) have the same reservation time and lience there is
no ‘output reservation conflict’.

Property 2 In any time slot, no iriput port is denieda reser-
vation (i fany one of the required output port is available).

The proofs of the above properties are given elsewhere.

3. Performance

In this section, we use simulation to study in detail the
performance of the switch with the cyclic reservation inter-
val scheduler. We obtain the performance measures such as

263

maximum achievable throughput of the switch, mean cell
delay, and cell loss ratio. In getting the cell delay perfor-
mance, we assume large random-access buffers in the IB
modules. In this paper, we present the results with indepen-
dent and uniform traffic, i.e., at each input, at the beginning
of each time slot, a cell arrives with a fixed probability and
the arriving cell has a destination request that is uniformly
distributed over all outputs, independent of other cells.

40

35

3 0

2 25
4

0 2 0

9
1 15

3.1. Simulation Results

- 6-4 -
6-8 -t

6-16 *
- OUtpUt Queuing *

-

-

-

except for small size switches, this delay component may
be offensive. We discuss later, some applications where the
proposed scheduler is most appropriate.

Table I shows the maximum achievable throughput for
various switch sizes and search depths (N and d resp.). In
the throughput calculation, we assume that the input queues
are ‘saturated’, i.e., each input queue as always having d or
more number of cells in it. Note that the rate of increase
of throughput with search depth is more and more as switch
size changes from 4 to 8 and to 16. Also, with a reasonable
value of search depth of 16, maximum throughput is as high
as 96%.

0.864
0.886
0.902
0.914
0.923

m
m36-
0.753
0.81 1
0.847
0.87 1
0.889
0.903
0.9 15
0.924
0.932
0.945
0.954
0.96 1

0.74 1
0.803
0.841
0.868
0.888
0.902
0.914
0.924
0.932
0.944
0.954

Table 1. Maximum achievable throughput for
various switch sizes and search depths (N
and d resp.)

Fig. 3 shows the mean delay of a cell (expressed in
number of cell times) in an input queueing switch with the
proposed scheduler, and also in an output queueing switch,
for comparison. We ignored the unit cell transmission time
across the switch fabric. Also, the scheduler is so fast that
the processing delay is negligible. Thus, the cell delay has
two components: waiting time in the random-access buffer
before the transmission time being assigned, and the wait-
ing time in the send buffer after the transmission time being
assigned. Note that the second component is the inherent
delay due to the advance reservation. This dealy is indepen-
dent of the cell arrival rate and its mean value is equal to
(N - 1)/2, where N is the number of input ports. Ofcourse,

I x
0
0 0 . 2 0 . 4 0 . 6 0 8

Cell Rate

Figure 3. Mean cell delay (in cell times) vs.
cell arrival rate for various search depths d ;
N =16

Figs. 4 and 5 illustrate the cell loss behaviour. Offered
load is the same as the cell arrival rate. The results cor-
responding to smaller buffer sizes than the search depths
(e.g., buffer size 5 and search depth 8) mean that all the cells
present in the input random-access buffer are matched in
the same slot, against the reservation state entries in the RT.
Our simulation results show that it is adequate to provide a
buffer size of 20 cells, as there is no further improvement
beyond this point.

1.0e+oo

&

1.oe-02
rl

1.08-03

1.0s-04

Figure 4. Cell loss rate vs. random-access
buffer size for various search depths d ; of-
fered load is 0.9 and N =I6

3.2. Discussion

One drawback with our scheduler is that when the offered
load is small, there is a mean cell delay (in cell times) equal

264

1.0st00

a-4 -
4-8 -+--.
6-16 0

........... ~ ~~~~~ *
8

1.0s-01 -

LI

.l

3 ...

1.oe-oa -

t 1.0e-03

3 c

1.00-04 I I
0 io io 30 4 0 5 0 60 7 0 B o

BUffar Sise

i

Figure 5. Cell loss rate vs. random-access
buffer size for various search depths d ; of-
fered load is 0.95 and N =16

to (N - 1)/2, where N is the number of the input ports. As
mentioned earlier, this is the inherent delay of the advance
reservation scheme and is the mean waiting time of the
cells after reservation but before being transferred across
the switch fabric, and also it is independent of load. Due
to this delay performance, our scheduler is most appropriate
for switches of small to moderate size with high link speeds
(1 Gbit/s or more), such as those used in ATM LANs (local-
area networks). For example, this delay is about 2.5 ps if
the number of input ports is 16, and link speed is 1.3 Cbit/s.
Large switches are often inappropriate for LANs as it would
be unduly costly for sites that have only a few workstations.
Smaller switches allow capacity to be added incrementally
at low cost [3]. A number of work stations can be connected
via a multiplexer to a high speed link. Our scheduler is also
appropriate for large switches with a modular architecture,
where switch modules are independently operated and each
switch module has substantially fewer inputs than outputs.

Also, this delay performance is not a serious drawback
even in a traffic scenario where we have real time voice or
video traffic in addition to the data traffic. Since this delay
component is load independent and its maximum value is
known (i.e., N - l), we can have a ‘built-in’ playout delay
at the receiving end of the real time traffic.

4. Conclusion

We have proposed a new output scheduler to improve the
performance of an input queueing ATM switch. Without
any speed-up, input/output grouping or complicated hard-
ware, the maximum throughput achievable for a moderate
search depth of 16 is about 96%. As far as the hardware
complexity is concerned, the new scheme is comparable
with the one proposed in [8]. However, the performance of
the new scheme is much better than that reported there. For

example, the maximum achievable throughput there, even
for an arbitrarily large (impractical) search depth, is only
94%. Our simulation results reveal superior performance
in cell delay and cell loss ratio also. Furthermore, the new
scheme ha:; got the inherent fairness property without any
additional hardware complexity. The high speed and thc
efficiency of the new scheme make it most appropriate for
switches with small size and high speed input/output links,
such as those used in ATM LANs, where the traffic from
a number of workstations are multiplexed on to high speed
links to a central ATM switch.

References

M. C;. Hluchyi and M. J. Karol, “Queueing in
High-Performance Packet Switching,” IEEE JSAC,
6(9): 1587-1 597,1988.

L. Jacob and A. Kumar, “ Saturation Throughput Anal-
ysis of An Input Queueing ATM Switch with Multi-
class Bursty Traffic,” IEEE Tr on Coninziinications,
43(2/3/4):757-761, 1995.

T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thack.er, “High-speed Switch Scheduling for Local-
Area Networks,” ACM Tr: on Cornpiiter Sjstems,
11(4):319-352, 1993.

N. McKeown, P. Varaiya, and J. Walrand, “Scheduling
Cells in an Input-Queued Switch,” IEE Electronics
Letters, 29(12):2174-2175, 1993.

H. Obara, “Optimum Architecture for Input Queueing
ATM Switches,” IEE Electronics Letters, 27(3):555-
557,1991.

H. Obara, S. Okamoto, and Y. Hamazumi, “Input and
Output Queueing ATM Switch Architecture with Spa-
tial and Temporal Slot Reservation Control,” IEE Elec-
tronics Letters, 28(1):22-24, 1992.

M. J. Karol, K. Y. Eng, and H. Obara, “Improving the
Performance of Input Queued ATM Packet Switches,”
INFOCOM:110-1l5, 1992.

H. Matsunaga and H. Uematsu, “A 1 .5 Gb/s 8x8 Cross-
Connect Switch Using a Time Reservation Algorithm,”
IEEE.JSAC9(8):1308-1317, 1991.

H. Obara and Y. Hamazumi, “Parallel Contention Res-
olution Control for Input Queueing ATM Switches.”
IEE Electronics Letters, 28(4):838-839, 1992.

R. Graham. D. Knuth and 0. Patashnik. “Concrete
Mathematics: A Foundation for Computer Science,”
Addison Wesley, 1988.

265

