
A Simple and Fast Scheduler for Input Queued ATM Switches 

Hyojeong Song, Lillykutty Jacob 
Dept. of Comp. Sci., KAIST, Taejon 305-701, Korea 

{hjsong,lilly} @camars.kaist.ac.kr 

Hyun-Gon Kim 
LG Information & Communications Ltd., Anyang 43 1-080, Korea 

Boseob Kwon 
Electronics and Telecommunications Research Institute, Taejon 305-350, Korea 

Jai-Hoon Chung 
Samsung Electronics Co., Ltd., Seoul 138-240, Korea 

Hyunsoo Yoon 
Dept. of Comp. Sci., KAIST, Taejon 305-701, Korea 

Abstract 

Man). ‘outp;it-sclzedLiling ’ algorithins have been pro- 
posed for  improving the perforinnrice of input queued asjn- 
chronoiis transfer mode (ATM) switches, whereby cells from 
different randonz-access input queues destined for  the suine 
output cun be scheduled for  nori-conjicting transmissions. 
An optimal output-scheduling algorithm, one with the $111 

coordination of transmissions to all outputs, can approach 
the peforrnarice of output queueing. Because of the con- 
plexity of such an optimal scheduler; output schedulers pro- 
posed in the literature ure without such coordination. We 
propose U simple waj to incorporate such a $ill coordi- 
nation in output-scheduling bvitli much siinple hardware. 
Throughput of the input qiieiieirig switch thus approaches 
that of the output queueing switch, without speed-up, in- 
piit/oiitput grouping or complicated hardrvare. To make the 
output-scheduling algorithin fast enough, we incorporate 
parullelisin arid pipelining. We perforin detailed siniulation 
studj ofthe perforiiiance of the input queueing switch with 
the proposed sckediiling algorithin. 

1. Introduction 

For an internally nonblocking ATM switch, buffering is 
required to resolve the contention that occurs when multi- 
ple ATM cells simultaneously arrive at different input ports 
destined for the same output port. Only one cell at a time 
(i.e., in each time slot) can be transmitted over an output 

link; the rest must be temporarily stored in a queue. Output 
queueing yields the best performance possible in a switch: 
each input/output line of an output queued switch can be 
loaded upto 100%. However, the hardware cost of output 
queueing is prohibitive for all but the smallest switches. We 
restrict our attention to input queued switches. 

It is well known that when FIFO queues are used, the 
throughput of an input queued ATM switch with independent 
and uniform input traffic can be limited to just 58.6% when 
the number of inputs/outputs N is large [ 11. When arrivals 
are correlated, the throughput can be even lower [2].  The 
throughput is limited because acell can be held up by another 
cell queued ahead of it that is destined for a different output. 
This phenomenon is known as HOL blocking. 

Numerous papers have indicated that by using non-FIFO 
(random-access) input queues and using good scheduling 
policies, effect of HOL blocking can be reduced and much 
higher throughputs can be obtained [ 1, 3, 4, 5 ,  6, 71. With 
random-access queues, an input may transmit to any one of 
the outputs for which it has a queued cell, with the constraint 
that each input can send at most one cell and each output can 
receive at most one cell, in  each time slot. Random access 
input queues lead to forwarding cells through the switch 
fabric in an order different from the order in which they 
arrived. However, the switch maintains the cell sequence 
within each ‘flow’, since only the first queued cell in each 
flow is eligible to be transmitted through the fabric; where a 
flow is a stream of cells between a given input-output pair. 

The difficulty is in  devicing an algorithm that is both fast 
enough to schedule cells at high link speeds and efficient 
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enough to deliver high link throughput, combined with min- 
imal hardware complexity. Hluchyj et al. [ 11 suggested an 
iterative method in which an input that loses the first round 
of the contention tries with the second cell in its queue on the 
second round, and so on. After some number of iterations 
IC (called window size), the winning cells from the vari- 
ous inputs are sent through the switch fabric to the outputs. 
This scheme has a growth problem because it is a sequential 
procedure, meaning that the speed of the algorithm is pro- 
portional to both the number of input ports and the number of 
iterations. In the parallel iterative matching (PIM) algorithm 
[3] and in the SLIP-IRRM (iterative round robin matching) 
algorithm 141, all inputs and outputs perform iterations in 
parallel, where each iteration involves three phases: request, 
grant and accept phases. The request, grant, and accept 
proptocol is implemented by running a wire between every 
input and output, which requires scheduling logic hardware 
that grows as O(N2) .  Also, though these algorithms provide 
high throughput (asymptotically 100%) for independent and 
uniform traffic, they perform less well and are unable to sus- 
tain high throughput if the traffic is not uniformly distributed 
over outputs, or if the arrival process is not Bernoulli. 

Regarding efficiency, an optimal scheduling algorithm 
could approach the performance of output queueing but 
would require coordination of transmissions to all the out- 
puts. Because of the complexity of such an optimal sched- 
uler, algorithms have been proposed without such coordi- 
nation, i.e., each output is allowed to schedule the trans- 
missions independently of the others, thus leading to much 
simplified hardware [ S ,  6, 71. 

Our approach is to use advance reservation (i.e., reser- 
vation in an earlier time slot than the one in which the cell 
is actually transmitted to the output port), parallelism and 
pipelining inorder to achieve the performance of optimal 
scheduler (with full coordination of transmissions to all the 
outputs), that is both fast enough to schedule cells at high 
link speeds and less complicated to be implemented. Fig. 1 
shows a simplified block diagram of an input queueing ATM 
switch 17, 81. The switch is composed of three functionally 
independent components: the input buffer (IB) modules, 
the contention resolution (CR) module, and a self-routing 
nonblocking space-division switch. 

An approach incorporating both advance reservation and 
pipelining was used in [8] for scheduling in an ATM switch 
of the same configuration as Fig. 1 .  The basic scheme pro- 
posed there is unfair in the sense that the throughputs from 
various input ports differ by significant amounts. To solve 
this fairness problem, a ‘barrel-shifter’ is used to cycle the 
sequence in which the inputs are scheduled, which makes 
the implementation more complex. Also, switch through- 
put, cell delay and cell loss rate are all sensitive to the 
parameter M ,  the frequency with which the barrel-shifter is 
operated (called rotation period). 
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Figure 11. Simplified block diagram of an input 
queueing ATM switch 

The scheduler proposed in this paper has inherent fairness 
property without any additional hardware such as barrel- 
shifter. Also, it is fast and highly efficient in the sense 
that it provides as high a throughput as 96% for feasible 
implementations. In Section 2 the different aspects of the 
scheduler are described in detail. Section 3 presents the 
details of the simulation study with the new scheduler, and 
Section 4 gives the conclusion. 

2. Cyclic Reservation Interval Scheduler 

In the detailed architecture of the switch with a config- 
uration as shown in Fig. 1, each IB module consists of a 
random-access buffer, a send buffer and an IB controller 
[8]. ATM cells that arrive at each IB, in a synchronous, time 
slotted fashion, are stored in the order of their arrival, in 
the random access buffer. Using information from the IB 
controllers, the CR module schedules, in advance, the trans- 
mission times of cells in the random access buffers. Each 
scheduled cell (that has got output port reservation) is trans- 
ferred from the random-access buffer to the send buffer in 
that IB module. The cells stored in a send buffer are shifted 
forward by one position, in every time slot, and the cell 
in the HOL position will be transported across the switch 
fabric. A scheduled cell is stored at such a location in the 
send buffer that, precisely at the time slot for which it has 
got the reservation of the desired output (i.e., at the sched- 
uled transmission time of that cell), it will reach the HOL 
position of the send buffer and will be transported across the 
switch fabric. 

2.1. Reservation Procedure 

First, we define some terminologies. By ‘time t’ in our 
description, we mean time slot t. 
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Definition 1 Reservation time of an input port i at time 
t is de$ned as the time at which the cell, f o r  which the 
reservation is made at time t, is actuallj transmitted across 
the switch fabric, and is denoted by R,(t). 

Definition 2 Reservation interval of an input port i at time 
t is R,(t) - t. 

The reservation interval (RI) of each input port determines 
the reservation priority of that input port. This point will 
become clear later, with the description of the reservation 
scheme. 

Definition 3 The first reservation input port (FRP) at a 
given time t is the input port i with the largest reservation 
interval R,(t) among all the inputports (i E {O, 1 ,  . . . , N - 
1 1 ) .  

Definition4 The last reservation input port (LRP) at a 
given time t is the input port i with the smallest reser- 
vation interval R,(t) among all the input ports (i E 
(0, 1 , .  . . , N - l}). 

In order to provide fairness, the reservation interval of 
each input port is allowed to change from time to time in 
a cyclic manner and hence it is called cyclic reservation 
interval (CRIJ. For specific reason, which will be explained 
next, the cyclic reservation interval of input port i at time t 
is given by the relation 

where 
O < i < N -  I ,  

GCD(T + 1, N) = 1, T # qN for any q E I 

The CR module of the switch has N reservation tables 
(RTs) in it,  one RT for each IB [8]. Each RT consists of 
N reservation state entries to indicate the reservation states 
(i.e., the availability or nonavailability) of N output ports 
for a future time slot; a ‘0’ indicates that the corresponding 
output port is available and a ‘ 1 ’ indicates that it is not avaii- 
able. Output port address of the cells in the random-access 
buffer of IB, ,  from the HOL position upto a maximum of 
d (called ‘search depth’), are matched against the available 
output ports in RT,. If a match is found, the corresponding 
entry of RT, is changed from 0 to 1 and the matching cell is 
transferred from the random-access buffer to the send buffer 
in IB,. In the send buffer, the cell is stored at the register 
entry corresponding to the value of CRI,(t) ,  so that, after 
CRI,(t)  number of time slots, it will reach the HOL position 
of the send buffer and will be transported across the switch 
fabric. In the random-access buffer, all the subsequent cells 

(those were behind the cell which has just been transferred 
to the send buffer) are shifted forward to occupy the va- 
cant position. Schematic representation of the structure and 
operation at IB,-RT, pair is given in Fig. 2. 

I Random Access Buffer Send Buffer I 
I 

r ... ... 
N-1 * * *  2 1 0 

IB Controller 

l 

RT 

- Switch Fabric 

Figure 2. Schematic representation of the 
structure and operation at IB,-RT, pair 

With the above reservation mechanism, additional hard- 
ware is necessary for the IB module than proposed in [8], 
in order to maintain cell sequence within a flow. Since the 
reservation interval of an input port changes cyclically from 
time to time, it is possible in our scheme that, two cells, 
from the same input port and with the same destination ad- 
dress, to have the assigned transmission times in an order 
that reverses the order in which they arrived at the IB. An 
exchange of the storage positions of these cells within the 
send buffer is necessary. This can be done with minimal 
hardware modification. The problem of maintaining cell se- 
quence within a flow using extra hardware has been reported 
in other schedulers also [9, 71. 

2.2. Parallelism 

We have mentioned in the description of the reservation 
procedure that, in each time slot, output port address of the 
cells in the random-access buffer of IB,, from the HOL 
position upto a maximum of d, are matched against the 
available output ports in RT,. All cells within the search 
depth d are matched simultaneously. However, only the 
oldest cell with a matching is selected and transferred to 
the send buffer. The hardware implementation details of 
such an IB controller is presented in [8]. The advantage of 
the parallel searching scheme is that the scheduling speed 
is invariant to the value of d; a large value of d has great 
impact on the performance of the switch as shown in the 
next section. Ofcourse, d cannot be too large as it increases 
the hardware complexity of the IB controller. The concept 
of sending many requests simultaneously by an input port, 
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in a single time slot, has been used in several schedulers 
[3,5,6,9,71. 

2.3. Pipelining Technique 

In each time slot, reservation mechanism proceeds at 
each IB-RT pair independently and in a pipelined manner. 
Reservation state entries which are modified as described 
in  the reservation procedure are cyclically shifted from one 
RT to another. In each time slot t ,  all entries in the RT 
associated with the FRP at time t are set to 0 before the 
reservation mechanism for that IB-RT pair takes place; 
similarly, entries in the RT associated with the LRP at time 
t are discarded after the reservation mechanism for that IB-  
RT pair has been finished. 

The sequence in which this cyclic shifting occurs is dif- 
ferent for different values of T and N .  For a given T and for 
a fixed N ,  we can obtain the relationship between i and j ,  
where the entries of RT, are shifted to RT,, in the manner 
described next. 

Since input port j (resp. i) makes a reservation at time t 
(resp. t + 1)  for the actual cell transmission at R3(t)  (resp. 
R,(t + I ) ) ,  if there is a matching in the respective case, we 
have 

R3( t )  = R, ( t+  I )  
t + CRI,(t) = 1 + 1 + CRI,(t + 1 )  

2.4. Cyclic Reservation Interval Algorithm 

Here, we summarise the sequence of operations which is 
performed at. IBi-RTi pair, at time t .  The same sequence of 
operations is performed at all IB-RT pairs simultaneously, 
in every time slot. 

1. The cyclic reservation interval of input port i ,  CRI, ( t ) ,  
is calculated according to Eqn. (1) .  

2. If CRIi(t)  = N - 1 ,  all the entries of RT, are set to 
0 (CRI,(t) = Ar - 1 means that the input port i is the 
FRP at time t ) .  

3. Output port address of up to a maximum of d cells from 
the HOL position, in the random-aczess buffer of IB,,  
are matched against the vacant output port reservation 
state entries in RT,. If a matching is found, then the 
corresponding entry of RT, is made 1 .  

4. If CRI,(t) = 0, the entries of RT, are discarded 
(CRI,(t) = 0 means that the input port i is the LRP 
at time t ) .  Otherwise, the entries of RT, are shifted to 
its successor RT. The entries of RT, are replaced by 
those of its predecessor. 

5.  The matching cell (if any) is transferred from the 
random-access buffer to the send buffer in IB,, and 
is stored at the location corresponding to the value of 

t + ((CRI,(O) + 7 t )  mod N) = t + 1 + ((CRI,(O) + T ( t  + I ) )  mod N )  

J + ~t + k N  = ( L  + I + T ( t  + I ) )  for some k E I 
CRI,(t) .  If there is a cell with the same output port 
address behind this location, then an exchange of the 

j + k N  = ( ~ + I + T )  
j = (it 1 + T )  mod N 

Step 2 follows from Def. 2 and steps 3 and 4 follow from 
Eqn. (1). 

Observation 1 The sequence satisfying Eqn. ( 2 )  includes 
all the N RTs, provided GCD(r  + I ,  N )  = 1. 

Proof. Using Eqn. (2) ,  we get the AT successive RT 
indices as 

i, (i + T + I )  mod N, ( i  + 2(7 + 1 ) )  mod Ai; 
..., ( i  + (A7 - I)(T + I ) )  mod N (3 

If these N indices are not all different, then for some 0 5 
j , k  5 N -  1 , j  # I C  

( z  + j ( ~  + 1)) mod N = ( z  + k(T + I ) )  mod AT 

i.e. 

By the cancellationproperg [ IO], when GCD(T+ I ,  hr) = 
1 ,  we have 

( j ( ~  + 1)) mod N = ( k ( 7  + I ) )  mod A’ 

j mod N = k mod N 

which contradicts the assumption that j # I C .  Therefore, 
all the N RT indices in the sequence given by Eqn. (3) are 
distinct. 

storage positions of these cells within the send buffer 
is done, in  order to maintain cell sequence within that 
flow. 

(2) 

6. If a cell is transferred to the send buffer, then all the 
subsequent cells in the random-access buffer are shifted 
forward to occupy the vacant position. 

Next, we define two properties of the cyclic reservation 
interval scheduler which ensure the correctness of the dis- 
tributed algorithm, and guarantee efficiency. 

Property 1 .At any given time t, no two input ports a arid J 

(i # j )  have the same reservation time and lience there is 
no ‘output reservation conflict’. 

Property 2 In any time slot, no iriput port is denieda reser- 
vation (i fany one of the required output port is available). 

The proofs of the above properties are given elsewhere. 

3. Performance 

In this section, we use simulation to study in  detail the 
performance of the switch with the cyclic reservation inter- 
val scheduler. We obtain the performance measures such as 
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maximum achievable throughput of the switch, mean cell 
delay, and cell loss ratio. In getting the cell delay perfor- 
mance, we assume large random-access buffers in the IB 
modules. In this paper, we present the results with indepen- 
dent and uniform traffic, i.e., at each input, at the beginning 
of each time slot, a cell arrives with a fixed probability and 
the arriving cell has a destination request that is uniformly 
distributed over all outputs, independent of other cells. 

40 

35 
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2 25  
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0 2 0  
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3.1. Simulation Results 
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except for small size switches, this delay component may 
be offensive. We discuss later, some applications where the 
proposed scheduler is most appropriate. 

Table I shows the maximum achievable throughput for 
various switch sizes and search depths ( N  and d resp.). In 
the throughput calculation, we assume that the input queues 
are ‘saturated’, i.e., each input queue as always having d or 
more number of cells in it. Note that the rate of increase 
of throughput with search depth is more and more as switch 
size changes from 4 to 8 and to 16. Also, with a reasonable 
value of search depth of 16, maximum throughput is as high 
as 96%. 

0.864 
0.886 
0.902 
0.914 
0.923 

m 
m36- 
0.753 
0.81 1 
0.847 
0.87 1 
0.889 
0.903 
0.9 15 
0.924 
0.932 
0.945 
0.954 
0.96 1 

0.74 1 
0.803 
0.841 
0.868 
0.888 
0.902 
0.914 
0.924 
0.932 
0.944 
0.954 

Table 1. Maximum achievable throughput for 
various switch sizes and search depths (N 
and d resp.) 

Fig. 3 shows the mean delay of a cell (expressed in 
number of cell times) in an input queueing switch with the 
proposed scheduler, and also in an output queueing switch, 
for comparison. We ignored the unit cell transmission time 
across the switch fabric. Also, the scheduler is so fast that 
the processing delay is negligible. Thus, the cell delay has 
two components: waiting time in the random-access buffer 
before the transmission time being assigned, and the wait- 
ing time in the send buffer after the transmission time being 
assigned. Note that the second component is the inherent 
delay due to the advance reservation. This dealy is indepen- 
dent of the cell arrival rate and its mean value is equal to 
( N  - 1)/2, where N is the number of input ports. Ofcourse, 

I x 
0 
0 0 . 2  0 . 4  0 . 6  0 8  

Cell Rate 

Figure 3. Mean cell delay (in cell times) vs. 
cell arrival rate for various search depths d ;  
N =16 

Figs. 4 and 5 illustrate the cell loss behaviour. Offered 
load is the same as the cell arrival rate. The results cor- 
responding to smaller buffer sizes than the search depths 
(e.g., buffer size 5 and search depth 8) mean that all the cells 
present in the input random-access buffer are matched in 
the same slot, against the reservation state entries in the RT. 
Our simulation results show that it is adequate to provide a 
buffer size of 20 cells, as there is no further improvement 
beyond this point. 

1.0e+oo 

& 

1.oe-02 
rl 

1.08-03 

1.0s-04 

Figure 4. Cell loss rate vs. random-access 
buffer size for various search depths d ;  of- 
fered load is 0.9 and N =I6 

3.2. Discussion 

One drawback with our scheduler is that when the offered 
load is small, there is a mean cell delay (in cell times) equal 
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Figure 5. Cell loss rate vs. random-access 
buffer size for various search depths d ;  of- 
fered load is 0.95 and N =16 

to ( N  - 1)/2, where N is the number of the input ports. As 
mentioned earlier, this is the inherent delay of the advance 
reservation scheme and is the mean waiting time of the 
cells after reservation but before being transferred across 
the switch fabric, and also it is independent of load. Due 
to this delay performance, our scheduler is most appropriate 
for switches of small to moderate size with high link speeds 
(1 Gbit/s or more), such as those used in ATM LANs (local- 
area networks). For example, this delay is about 2.5 ps if 
the number of input ports is 16, and link speed is 1.3 Cbit/s. 
Large switches are often inappropriate for LANs as it would 
be unduly costly for sites that have only a few workstations. 
Smaller switches allow capacity to be added incrementally 
at low cost [3]. A number of work stations can be connected 
via a multiplexer to a high speed link. Our scheduler is also 
appropriate for large switches with a modular architecture, 
where switch modules are independently operated and each 
switch module has substantially fewer inputs than outputs. 

Also, this delay performance is not a serious drawback 
even in a traffic scenario where we have real time voice or 
video traffic in addition to the data traffic. Since this delay 
component is load independent and its maximum value is 
known (i.e., N - l),  we can have a ‘built-in’ playout delay 
at the receiving end of the real time traffic. 

4. Conclusion 

We have proposed a new output scheduler to improve the 
performance of an input queueing ATM switch. Without 
any speed-up, input/output grouping or complicated hard- 
ware, the maximum throughput achievable for a moderate 
search depth of 16 is about 96%. As far as the hardware 
complexity is concerned, the new scheme is comparable 
with the one proposed in [8]. However, the performance of 
the new scheme is much better than that reported there. For 

example, the maximum achievable throughput there, even 
for an arbitrarily large (impractical) search depth, is only 
94%. Our simulation results reveal superior performance 
in cell delay and cell loss ratio also. Furthermore, the new 
scheme ha:; got the inherent fairness property without any 
additional hardware complexity. The high speed and thc 
efficiency of the new scheme make it most appropriate for 
switches with small size and high speed input/output links, 
such as those used in ATM LANs, where the traffic from 
a number of workstations are multiplexed on to high speed 
links to a central ATM switch. 
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