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ABSTRACT. We consider the following singularly perturbed problem
1%}
2Au—u+ f(u) =0, wu>0ing, 8—u:00n8§2.
v

Existence of a solution with a spike layer near a min-max critical point of the
mean curvature on the boundary 052 is well known when a nondegeneracy for
a limiting problem holds. In this paper, we use a variational method for the
construction of such a solution which does not depend on the nondengeneracy
for the limiting problem. By a purely variational approach, we construct the
solution for an optimal class of nonlinearities f satisfying the Berestycki-Lions
conditions.

1. Introduction. Let Q C R™, n > 3 be a bounded domain with a smooth bound-
ary 90 € C*. In this paper, we consider the following singularly perturbed nonlinear
Neumann problem

E2Au—u+ f(u)=0, u>0inQ, %:001&39, (1)
v

which corresponds to steady states of a chemotaxis model of Keller and Segel [23]
and the shadow system of Gierer and Meinhardt [18] for a pattern formation. For
the background of the models originated from the ground breaking idea of Turing
[36], refer to the survey article [33] by Ni.

Problem (1) has a mountain pass solution (refer to [2]) when f € C1(R) satisfies
the following conditions:

(f1): f(t) =0 for t <0 and lim;_,o f(¢)/t = 0;

(f2): there exist some a,b > 0 and p € (1, 22

t > 0;
(£3-1): there exist ¢ > 2 and to > 0 such that /lf(f f(s)ds < f(t)t for t > to.

In a series of papers [28, 34, 35], Ni and his collaborators studied an asymptotic
profile of the mountain pass solution as € — 0. In fact, they proved very elegant
results that for sufficiently small ¢ > 0, there exists a unique maximum point

) such that |f(t)] < at + btP for
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xe € 0N of the mountain pass solution u. and constants C, ¢ > 0, independent of
e > 0, satisfying

(1): 0 <liminf. o uc(x.) < limsup,_ g ues(z:) < 00, uc(x) < C’exp(—c‘z;izsl)7
(ii): for a diffeomorphism ¥ from @ to a neighborhood B of z. in  satisfying
Y(OR%) = BN oQ and VI¥(0) € SO(n), a transformed solution v.(z) =
ue o ¥(ex) converges uniformly to a radially symmetric least energy solution

U of the following limit problem
Au—u+ f(u) =0, v>0in R},
2
% =0 on OR} and |m1|1£>noou($) =0, @
(iii): for the mean curvature H of 92 with respect to the outward unit normal
vector field,

gli% H(xz.) = min H(x)

when f satisfies the following additional conditions

(£3-2): there exists p > 2 such that ufot f(s)ds < f(t)t for t > 0,

(f4): f(¢)/t is non-decreasing on (0, c0),

(f5): there exists a unique radially symmetric solution U € H12(R") for Au —
u+f(u) = 0,u > 0 in R" such that if AV -V +f(U)V = 0and V € HL2(R"),
then V =37, ai% for some ay,--- ,a, € R.

This shows that for small £ > 0, the mountain pass solution u. develops a peak (or
spike layer) at z. which approaches to a minimum point of H as ¢ — 0.

Here, we note that in all previous papers related to the studies on problem (1),
they use a mean curvature of 02 with respect to the inward unit normal vector
field. Since we use a min-max argument in this paper, for convenience’s sake, we
use instead the mean curvature H of 92 with respect to the outward unit normal
vector field; thus the mean curvature of the unit sphere is —1 in this paper.

As for the mountain pass solutions, there have been endeavors to weaken the
additional conditions (£3-2),(f4), (f5) to get the asymptotic behaviors (i), (ii), (iii).
In the insightful paper [16], del Pino and Felmer proved (i)-(iii) for the least energy
solution of (1) without condition (f5) in a simpler way. (See also [21] for a variational
construction of multi-peak solutions corresponding local minimum points of H). In
[9], the first author and Park proved the asymptotic behaviors (i), (ii), (iii) for the
mountain pass solution of the same type of problem on a compact n—dimensional
manifold, n > 3, further without the assumptions (f4) and (f5). On the other
hand, in a classical paper [4], Berestycki and Lions proved the existence of radially
symmetric least energy solution U of the limiting problem (2) when (f1),(f2) and
the following (f3) are satisfied:

(£3): there exists T' > 0 satisfying F/(T) = fOT ft)dt >T?/2,
which is a necessary condition for existence of a solution of (2). In [22], Jeanjean and
Tanaka observed that the least energy solutions of (2) obtained in [4] are mountain
pass solutions. It is our intuitive understanding that the mountain pass solutions are
(structurally) stable under a perturbation, this is, the solutions persists to exist for
a perturbation. Thus, since condition (f1)-(f3) are almost necessary and sufficient
for the existence of a least energy solution of the limiting problem (2), it would be
natural to expect that the perturbed problem (1) would have a solution under the
conditions (f1)-(f3). In fact, the first author proved in [6] that when f € C! satisfies
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(f1)-(f3) and n > 3, for any connected component K of local minimum points of
the mean curvature H on 02, there exists a solution u. of (1) whose peak point
approaches to K as ¢ — 0. This result was extended for f € C? satisfying (f1)-(f3)
and n > 2 in [8].

As for the solutions different from (local) mountain pass solutions, there have
been numerous further studies. Existence of solutions with one spike layer near
nondegenerate critical points of H was proved in [37] and C! stable critical points
of H in [27] and variationally characterized critical points of H in [17], respectively.
For the solutions with multiple spikes layer, refer to [14, 29] and references therein;
for the solutions with higher dimensional layer, to [31, 30, 32] and references therein.
All the previous works mentioned above related to the construction of solutions dif-
ferent from (local) mountain pass solutions strongly depends on the nondegeneracy
condition, (f5), since they use the Liapunov-Schmidt reduction method. In many
perturbation problems in geometry and analysis, such a nondegeneracy condition
for limiting problems is widely assumed. On the other hand, for some perturbation
problems, such a nondegeneracy condition for limiting problems is very difficult to
prove in general; even worse, the nondegeneracy does not hold in some cases(refer
to [11]). For our problem in this paper, the nondegeneracy condition, (f5), was
verified for the most standard nonlinearity f(u) = u?,p € (1,(n+2)/(n — 2)) by
Kwong [24]. More generally, it is known in [12] that under a monotone increasing
property of (f'(uw)u —wu)/(f(u) —u) on [ug,00) for f(ug) = ug, (f5) holds. On the
other hand, the monotone property is not preserved for a small perturbation of a
nonlinearity f satisfying the monotonicity. In biological or physical modelings, it
is desirable that such a small perturbation for nonlinearities representing reactions
is allowed in the sense of stability of the modelings. Even for some typical cases
flu) =uP + Mt with 1 < ¢ < 3 < p < 5,n =3 and large A > 0, it was proved
recently by Davila, del Pino and Guerra in [15] that there are at least three radially
symmetric solutions of (2); the result of [15] suggests that it is almost impossible
to prove (f5) for such a simple nonlinearity f(u) = u” + Au? for some A € (0, 00).

Now, since (f1)-(f3) are stable under small perturbation of f and almost optimal
conditions for existence of a solution for (2), it is very desirable to prove that for
any saddle or maximum point xzg of H, there exists a solution u. of (1) with a
peak point z. approaching to x¢ as ¢ — 0. The purpose of this paper is to com-
plete the task. In [17, 27, 37], through the Liapunov-Schmidt reduction method,
they could distinguish € order energy difference of their energies for approximating
solutions depending on energy concentration points near the critical point of H
on 9% this good approximation leads to an existence of a solution for (1) with a
spike layer near the critical point. When (f5) does not hold, we can not use the
Liapunov-Schmidt reduction method. Recently, the first author and Tanaka devel-
oped a variational method in [10] for construction of semiclassical standing waves
of nonlinear Schrédinger equations corresponding to critical points of a potential
V which can be applied under only conditions (f1)-(f3) without the nondegeneracy
condition (f5). For construction of the standing waves for nonlinear Schrédinger
equations, we needed to distinguish only zero order difference of their energies for
functions close to approximate solutions for small € > 0. On the other hand, in our
problem (1), when we adopt a variational method, we need to distinguish e order
energy difference of their energies for functions close to approximate solutions for
small € > 0. To obtain this subtle estimate is the main difficulty when we apply the
scheme developed in [10] to problem (1). One of key differences with the previous
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variational method in [10] is that here we introduce a new concept of a transplan-
tation flow in Q along the boundary 052 instead of the translation flow used in [10].
Using the transplantation flow, we prove in Proposition 19 that for any solution
with one spike layer . € 9Q, lim._,o Voo H (z.) = 0, which is known only when the
additional condition (5) is satisfied (refer to [37]).

For a statement of our main result, we use the following notations. For a set
A C R" and d > 0, we define A? = {z € R" | dist(x, 4) < d}. For ¢; < e,
H? ={z € 00 | o < H(z) < cp}. For each a > 0 and a set M C 99, we
define M* = {z € 00 | distaa(z, M) < a}, where distpo(z, M) is the minimal
distance from z to M on 9. Now, for a set M of critical points of H, we assume
the following conditions:

(H1): There exists a connected open set O C 94, a k-dimensional C''-manifold
L in O with a boundary 0L = Lo C O and k € {1,--+,n—1}, apoint zg € L
and a continuous projection map IT: O — L such that for a class

AL = {(p S C(L76) | (p(z) = z for z c L0}7

= H(z) = inf H > H(z) = my,
=g ) = i uap ) = ) = mo

and that
H(z) > m for x € TT™*(2);

(H2): Theset M ={X € O | H(X) = m,VH(z) = 0} is a compact subset of
O and for each small ¢ > 0, there exists a neighborhood N C 99 of M with
a smooth boundary in O such that N'C M? and |VH(z)| # 0 for x € ON.

(H3): For some dg > 0, there are linearly independent C® tangent vector fields
{e1, -+ ,en_1} of 3Q on M\ M.

If (H1) holds, we see that M is not empty since zg € M. It is easy to see that if
zo is an isolated critical point of H on 0 which is a type of saddle or maximum,
(H1)-(H3) hold.

We define a diffeomorphism ¥, for each p € 9} as follows. Let v, be the inward
unit normal vector. Then there exists E, € O(n) such that E,v, = (0,...,0,1).
For small r > 0, there exists a neighborhood N of 0 such that N N E,(9€) can be
expressed as a graph of a function ¢, : OR’} N B(0,r) — R™. We define

Uy (21, ) = (Ep)’l(xl, iy Bp—1, Tn + Yp(T1, e, 1)) + D

Then, for sufficiently small » > 0, ¥, is a diffeomorphism between B(0,r) "R’} and
a neighborhood of p in 2. Our main result is the following theorem.

Theorem 1.1. Let Q C R" is a bounded domain with C*-smooth boundary OS).
Suppose that f € Ct satisfies conditions (f1)-(f3), and that (H1) - (H3) hold. Then
for sufficiently small e > 0, there exists a positive solution u. of (1) with a mazimum
point z. € I of ue such that there exist constants C,c > 0, independent of small
e > 0, satisfying uc(x) < Cexp(—<|x — z|) and
&11_% dist(ze, M) = 0.

Moreover, a transformed solution we(x) = u.(¥Y._(ex)), v € B(0,r/e) "R, con-
verges, up to a subsequence, uniformly to a radially symmetric least energy solution

w of (2).
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This paper is organized as follows. In Section 2, we prepare some preliminaries
containing coordinate transforms used for transplantation flows. In Section 3, we
define a set of approximate solutions and the center of mass. In Section 4, we define
a new neighborhood of the approximate solution set. In Section 5, we define a
tail-minimizing operator which does not increase the energy and makes functions
decay exponentially away from the center of mass. In Section 6, we construct an
initial surface and we get an upper energy estimate. In Section 7, we get a lower
estimate of the gradient norm of the energy functional in a tubular set. In Section
8, we introduce a transplantation flow which does not increase the energy. Finally,
in Section 9, we prove the main theorem. As in [10], we use an iteration argument
involving the gradient flow, the tail-minimizing operator and the transplantation
flow.

2. Preliminaries. From now on, we suppose that conditions (f1)-(f3) and (H1)-
(H3) hold. For any given set A in R™ and positive numbers ¢ > 0,¢ > 0, we define
A.={z e R" | ex € A} and A° = {o € R" | infyca |z — y| < ¢}. By the change of
variable, the problem (1) is equivalent to the equation:

ou
= 0 on 01).. (3)

For u € H'(Q.), we define its norm ||ull. = ([, |Vu[> + u?dz)'/? and an energy
functional

Au—u+ f(u)=0, u>0in Q,,

1
T.(u) = 5/ |Vu|? + u?dz —/ F(u)dz.
Qe e
Then, if (f1)-(f3) hold, T'. € C*(H'(£2.)) and a critical point of T'. is a solution of
(3). For any set A C H' and 6 > 0, we denote the d-neighborhood of A in H' by
Ns(A). For any ¢1,co € R, we define

(o) ={ue HI(QE) | Te(u) < e}, (Te)e, ={u € Hl(Qe) | Te(u) > ca},

and
(1—‘5)2 = (Fo) N (Te)e,-
2.1. Gradient flow of the mean curvature on 9. We take any small ¢ € (0, dy)
such that M?% ¢ M% C O, Ly N M?% = (). By condition (H2), for each small
q > 0, there exists a neighborhood N C 99 of M with a smooth boundary such that
N C M2 and |VH(x)| > 0 for z € ON. We take d € (0,q) such that |[VH(z)| > 0
for z € N'124\ V.
We find a C! function ¢ on 9 such that p(X) = 1 in N*? and ¢(X) = 0 in
O \ N9 and consider the following ODE
dd
O (1,X) = —p(@(1, X)) VH(®(1, X)), $(0,X) = X. (1)
Proposition 1. There exists a global solution ® : [0,00) x O — O of (4) such that
for some a;, pu,c; >0,
(1): for each X € O, H(®(-, X)) is nonincreasing on [0,00);
(il): ®(t, X) =X ift =0 or X € O\ N 5 L;
(iii): t € [0,p] and X € (N3 \ N9,

H(®(t,X)) < H(X) —at.
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Proof. Since Q) € C*, there exists a global solution of (4). Since ® satisfies the
equation (4), (i) and (ii) are obvious. There exists 4 > 0 such that for X €
(VB\ N9) and ¢ € [0, ], D(t, X) € (N??\ N). Moreover, there exists a constant
a > 0, such that [VH(x)| > Va if X € (N°?\ N). This implies that for ¢ € [0, u]
and X € (N84\ N9,
dH(D(t, X))
dt
This implies (iii). O

= —p(®(t, X)) VH(®(t, X)) < o

2.2. A set of approximate solutions and a truncation of the nonlinearity.
We define an energy functional related to the limit problem (2) by

1
[(u) = 5/ |Vu|2+u2dx—/ F(u)dz, uwe H'(R™).

For u € H*(R"), we define the norm [|u| = (
point of I' is a solution of

AU -U+ f(U)=0,U >0 in R*, lim U(z)=0. (5)

|z|— 00

Vul? +u?dx)'/2. A nonzero critical

n

We define H}(R") = {u € H'(R") | u(g9x) = u(z),g € O(n)}. Berestycki and Lions
proved in [4] that there exists a least energy solution of the equation (2) in R™ if
(f1)-(f3) are satisfied. They also proved that each solution U satisfies Pohozaev’s
identity

_9 2
" / |VU|2dx+n/ % ~ F(U)dz = 0. (6)

By the symmetry result in [19], any least energy solution in H!(R™) of (2) is, up to
a translation, radially symmetric and monotone decreasing with respect to |z|. Let
S be the set of least energy solutions U € H}!(R™) of (5). The following result is
well known [7, Proposition 1].

Proposition 2. The set S is compact and there exist C,c > 0 such that for any
Ues,
U(z) + |VU(x)| < Cexp(—c|z|), =€ R"™

Now we define a set of approximate solutions. We find a smooth radially sym-
metric function ¢. € C§°(R™) such that

¢o(x) =1 for |z| < 1/2eY3, ¢.(z) =0 for |z| > 1/e'/3 and |Vo.| <373 (7)

We define

2= {g.(- = U(-= ) e H'Q) | e N1 U € S}, (8)

For & > 0, we consider a § neighborhood Nj(Z10%) of 2104 in H(Q.).
We see from L*-norm estimates ([5, Proposition 3.5]) that there exists a large
constant K > 0 such that for any solution u. € Ns(Z1°%) of (3),

|luellpe < K for all small € > 0. 9)

The constant K depends only on the constants a,b > 0 in (f2), p in (f2) and n
(refer to [5, Proposition 3.5]). Then we can find f € C'(R) such that f(t) = f(t)
for t < 2K, f(t) = bt? for t > 3K and that f satisfies the conditions (f1),(f2) and
(f3) with the same constants. Thus for small ¢ > 0, any solution u. € Ns(Z19%)
of (3) with f replacing f satisfies the original equation (3). Thus, we can assume
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without loss of generality that the nonlinear function f satisfies further that for
some C >0, |f'(t)t| < C(t +P),t > 0.

2.3. Coordinate transforms. By (H3), there exist linearly independent C® tan-
gent vector fields {e1,--- ,e,_1} of 9Q on A%\ . By the Gram-Schmidt process,

we may assume that the tangent vector fields {ey,--- ,e,_1} are orthonormal. Let
e, be the inward normal unit vector of 9€). Now we have a C® smooth orthonormal
frame (3, -+, eX) on N0\ A such that e, - ,eX | € Tx(00Q) and € is the
inward normal unit vector of 92 at X. We consider
X X
S I 5 V)
E(X) = ( € en ) = : . :
X X
an1 " Qpn
where eX = (a3%, -+ ,aX) ; for convenience’s sake, we will sometimes write eX as

a column vector. We may assume that det(E (X)) = 1; thus E(X) € SO(n). This
also gives us an orthonormal frame E on N1\ AV, = LN\ 1N by E2(X) =
E(eX),X € N2\ N_. ; for simplicity of notation, we will sometimes denote E°
without superscript. For each X € N1%\ V., we consider a new coordinate system

Y =Yx =(y1, - ,Yn) on TxR™ which represents the point
21
EX)Y +X =EX) : +X
Yn

in the original coordinate system. We define the first (n — 1) components of y by y’.
In other words, ¥’ = (y1,- -+ ,yn—1). Then a neighborhood of X in 91 is expressed
as a graph y, = ¥x(y’) in the coordinate system for TxR™. We want to get some
dependence of the map 1 x with respect to X. We take any point Xo € N9\ N
By a translation and a rotation, we may assume Xy = 0 and Ex, = I. For X € 02
with any small | X[, the function ¥ x (y1,- -+ ,Yn—1) = ¥ is implicitly defined by

X X

aiy in Y1 T
Gy, yn, X) = to : : N
ag;—l)l afﬁz—l)n Yn Tp—1
Y1
—(ai(l affn) : -z, =0.
Yn
Note that fori=1,--- ,n,
at;
A ILel I B
Aln—1)i

ay apy, Y1 T
where V = +

aé—l)l affl—l)n Yn Tp—1

Since a?, = 1, there exists s; > 0 such that %(O,X) # 0 for X € 900N B(0,s1). By

nn
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the implicit function theorem, there exists sy > 0 such that for X € 9Q N B(0, s1),
there exists a C3—function ¥x on {(y1,* ,yn—1) | (Y1, ,yn—1)| < s2} satisfying

G(yl;"' 7yn717wX(y17"' 7yn71)7X) =0 for |X| < 31,‘(111»"‘ ayn71)| < Sa.

Then, a graph y, = ¥x(y') for |y’| < so represents 9 near X with respect to the
coordinate system {es¥,--- ,eX | eX} for TxR™. By the implicit function theorem,

fori=1,---,n—1,

dox o1 Divo(V)ag —ap; 10)
Oyi Y07 Djtho(V)ak, —af,

=

Taking a sufficiently small » > 0, we may assume that for some a € (0,1) and
M >0,

Vi (y)] < a, [D*0x (y)| < M, |D*¢x (y')] < M if |X| <,y € B"1(0,7).
(11)

Since %%yfo) = 0 for each X € B™(0,r) N0, we see that for i € {1,--- ,n — 1},

n—1
ZDﬂ/lo(l‘l,"' ,xn_l)aﬁ —affi =0. (12)
j=1

We may assume that the radius » > 0 and the constants a, M are independent of
Xo € N0\ V. We define a coordinate transform, ¥x : R? N B™(0,r) — Q by

n
Vx (Y1, 5 yn) = BE(X) : + X
Yn +Px(y')
The transform z = Ux(y) satisfies
1 0 .- 0
0 1 0 0
Dy¥x(y) = E(X) : s (13)
0 0 1 0
Dy1¢X(y/) : Dyn_ﬁ/fX(y/) 1
thus
detD, U x(y) = 1 for any X € N\ N,y € R N B"(0,7). (14)
We note that ¥' is expressed by the relation
21 — I 0
\Il;(l((zlv"' 72“)):E(X)_1 - )
Zn — Tn ¢X (yl)
where y' is the first (n — 1) components of \I/)}l (21, ,2,). From the bound of

|V x|, we see that
[Wx(y) = X[ < (1 +a)ly| for yeRENB"0,7)

and .
[t (2)] < 1_a\z—X\ for z € Ux (R} NB"(0,7)).

Thus, for 0 < R’ < R < R” < r satisfying R"/R>1+a and R/R' > 1/(1 — a),
B"(X,R)NQ C ¥x(B"(0,R)NR}) C B"(X,R")nqQ. (15)
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Now we will see Lipschitz continuity of ¥x(y1, - ,yn—1) with respect to X.
We consider ¥x(y1, - ,yn—1) as a function of a variable X for a fixed y =
(Y1, yYn—1) € B"71(0,7). Consider a smooth curve X (t) on 9Q N B(0,r) and
%(tﬂ = [(21(¢), - ,&n(t))] = 1. We define

d Xt _ .X(t) _ X .
%a’j =a;; = ag; for 1 <i,5 <n.
Since o (1, ,Tn-1) = Tp, it follows that

V(1 (t), -+ s xn1(t)) - (#1(8), -+, Zn-1(t)) — En(t) = 0.

Now, we see from above identity that

d
0 _&G(ylv e ame(t))

aX a¥, . i1 (t)
=V (V) : : : +
W e /O ey (1)
S 9
+ Viho(V) :
W11 " Tneyn o) ) (v
G xw W)
Y1 p
- ( apy o dff(n_n ) : —ambx (') — afna%((t)(?/) —Tn
Yn—1
ary ayx 1/.1
:V@[JO(V) .
Z1(t)
+ (Veo(V) = Voo, o) |
Ep—1(t)
Y1
- ( dﬁl af(nq) ) : - dv)fan(t)(yl)
Yn—1
ay,
+ (Vwo(V) : — afn) %wx(t)(y’) =14+ II+1IT+1V.

X
a’(n—l)n
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af,
Taking a smaller r > 0 if it is necessary, we see that ‘Vwo(V) —aX,| >
a‘(fzfl)n

1/2. Since I, 11,111 = O(|y’|), we conclude that

dx ) (y')

Sl oy, (16)
Taking a smaller r > 0 further if it is necessary, we see that for |y/| < r,

IVxvx(y) < 1. (17)

Since N'104\ N is compact, we may assume that above inequality holds for any
X € N1\ N and ' € B"1(0,7).
We define
Ox
Gi X, ! =
(X,9) i
Then, we can see from (10) that G;(X,y’) is a C%-smooth function with respect to
y’ and X. Note that

8¢X’ / _ .
3yl o Z

k=1
where A% is the é-th column of the second fundamental form of 92 at X € 9Q

and Rx (y') = O(|y'|?) is the remainder term. Let X (¢) be a curve in B™(0,7) N
satisfying %(tﬂ = |[(&1(t), -+ ,Zn(t))] = 1. From (10) and (12), we see that

37/1)( _ _Z?;ll (Dj'll)o( ) — ij(xl, e xnfl))aﬁ E

(y') on (B"(0,r)NdN) x B~1(0,r) fori=1,--- ,n—1.

(¥) = —Axy + Rx(y),

= =—_. (18)
Py Z Djipo(V ) - aX, F
We define
Eji(X,y') = (Djwo(V) = Djbg(w1, - &n1))ary.
Then, we see that
dE;i(X(t),y")
dt
o s . aX L8
v @y || X
Yj aX .. aX Yn—1
(n—1)1 (n—1)n wX (y/)
, e ST o 0
V(22 w) : . o
ayj CLX o (IX 0
(n—1)1 (n—1)n %wX(t)(yl)
87!}0 31/10 X

+ (G V)= gy @) i

o o o

0 _ (o .. : X

(VG0 - VG D)) |1

Tn—1
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=I+I11+1IT+1V.
It is obvious that I, ITI, IV = O(|y’|) and

n—1

Z _71/}0 Dj¢0(zla"' 793”_1))(1])5 :O(‘y/‘)

We see from (16) that 11 = O(|y'[). Since £G;(X(t),y') = EF;EF it follows that
dGi(X(t),y o
G .) S )| = ot
(19)

As for the remainder term, we can change the order of differentiation and we see
that

= O(ly/|); thus, for i =1, ,(n~ 1), |Vx

o Al K 0G o
ﬁmww—ﬁpw@w—;@AXtqumu
Thus, it follows that
IVxRx () = o(ly']). (20)

From the compactness of N1\ N[ we see that (11), (16) (19) and (20) hold uni-
formly for X € N10d\ Nd,

Now, we consider €, = %Q As far as there are no confusions, for small € > 0,
we use the same letters for the variables with the case ¢ = 1. For small ¢ > 0
and X € N0\ AL, the boundary points of 2. near X is expressed by the graph
Ve x : B"71(0,7/e) — R defined by

1
Ve x (Y1, Yn—1) = gwax(fyh'" s EYn—1)- (21)
We define a coordinate transform W, x : R} N B"(0,7/¢) — Q. by
1
Ve x (W, yn) = g\peX(gyla"' 1 EYn)- (22)
Then we see that
1 0 .- 0
0 1 0 0
DyV. x(y) = E(eX) : Sl (23)
0 0 1 0
DlwsX (sy/) : o anlwsX (gy/) 1

Ve x| < 0(|y']) < a, |D*¢e x| < eM, |D*p. x| <M on B"(0,r/e), (24)
where M is the bound in (11) and a can be chosen arbitrary small for small » > 0.
Estimates (16) and (17) imply that for |¢| < r/e,

IVxtex ()] =0(|y']). (25)
and
IVxvex(y) <1 (26)
Estimate (19) is transformed to

The results for ¥ x are transformed to the following results for ¥, x:

detD, ¥, x(y) =1 for any X € N2\ A., y € R N B"(0,7/e). (28)
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Ve x(y) — X| < (1+a)ly| for X €e N\ N, y € R} N B™(0,r/¢) (29)
and

1
|\I/;§((x)| < = a\a: — X| for € ¥, x(R} NB"(0,r/e)). (30)
Thus, for 0 < R’ < R < R” < r satisfying R"/R>1+a and R/R' > 1/(1 — a),
B"(X,R'/e)NQ. C ¥, x(B"(0,R/e)NR}) C B*(X,R"/e)nQ..  (31)

We write

0, 825
Vex () -5 OVexO g0y = Ay 1 Rx(y)

9y = Oyilys

where A! y is the i-th column of the second fundamental form of 9. at X € 99,
and R, x is the remainder term. Then, it follows that

R x ()] = €°0(|y'|*) and |VxRe x ()| = colely']). (32)

Summarizing what we have proved, we get the following proposition.

Proposition 3. Suppose that condition (H3) holds. Then for a small ¢ > 0 given
in (H2) and each small d € (0,q), there exist constants of v, M > 0 such that for
a C3 smooth orthonormal frame X € N\ N. — E(X) = (e, - ,eX) € SO(n)
satisfying that e3X,--- JeX | € Tx(09Q.) and e is the inner-normal unit vector of
Q. at X, there is a function 1. x representing 0. as a graph on B"~1(0,7/¢) C
Tx 08 such that for each X € N2OU\ N, a function v.x given by (21) represents
9Q as a graph on B"7Y(0,r) C Tex9 and the coordinate transform map V. x :
R? N B™(0,7/¢) = Qe given by

Y1
\Ije,X(yhayn):E(X) +X
Yn + e x (')

satisfying the following properties
(i) the Jacobian determinant of V. x is 1;
(i) |Vipe x| < a < 1/1000, |D2¢5,X| <eM, |D3w5’X| <e2M in B"_l((),?"/e),
Ve x| < min{LeO( )}, [Vx 25 ()] = 2O(y/)), =1 n—1;
(iii)

Wex(y) — X[ < (1 +a)ly| fory € R N B"(0,r/e),

1
|\IIE_§((1:)| < = a|x — X| for x € ¥, x (R} N B"(0,7/¢))
and for0 < R' < R < R" <r with R/R' >1/(1—a),R"/R>1+a,
B"(X,R'/e) N Q. C U, x(R" N B"(0,R/e)) C B"(X,R" /) N Qs

w awsx y') = —AL vy + R.x(y') where AL « is the i-th column of the sec-
(iv) =5 X X

ond fundamental f07"m of 0 at X and R x(y /) is a remainder term satisfying
[Rex (y)] = e20(ly'*) and |Vx Re x (y)| = eolely’]).

Remark 1. Note that 02 admits locally smooth orthonormal frame on T0S). Thus,
since 0f) is compact, there exists a constant ry > 0 such that for each zg € 09,
there exist a C3 smooth orthonormal frame X € B"(z/e,19/e) N Qe — E(X) =
(e, -+ ,eX) € SO(n) satisfying that e ,--+ ,ex_; € Tx(99Q.) and e;X is the inner-
normal unit vector of . at X. Then, by the same arguments with the proof of
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Proposition 3, there exists a constant r > 0 such that the properties (i)-(iv) of
Proposition 3 with maps ¥. x(y'), Ve x(y) defined for X € B(zp/e,r0/c) N 00,
y € B"1(0,r/¢) and y € B"(0,r/c) NR"%. This will be used to characterize a
concentration point of a spike layer solution in Proposition 19.

Remark 2. We claim that for a continuous curve p : [0, 1] — 92, there there exists
a(s) | pals)

an orthonormal frame (e]  enil
to s € [0, 1].

In fact, any point Xy € 02 has a small neighborhood Nx, such that condition
(H3) holds, that is, there exists a C® smooth orthonormal frame (es%,--- eX ;)
on TNy, for X € Nx,. This implies that there exists a positive integer £ > 0
such that for each ¢ € {0,--- ,k — 1}, there exists a continuous orthonormal frame

(el(f)7 el ;) on T'Ny( for s € [i/k, (i +1)/k].

' n—1,1
For s € [0,1/k], define (e{”, -, el®)) = (e1G/M, -, el4%). Let A1(1/k) be
an orthogonal transformation on Ty /x)(092) such that
1/k 1/k 1/k 1/k
(0, el ) = /Ry e,

’nll

) on T'Ngy(,) which is continuous with respect

Let Ay € O(n — 1) be the matrix representation of the transformation A;(1/k)
with respect to a basis (ei(ll/k), ceey n(l{kl)) Define A;(s) as the orthogonal trans-
formation on T4 (9§2) which is represented by the matrix A; with respect to

a basis (e‘i(f), . fL( )1 1), s € [1/k,2/k]. Now we define an orthonormal frame

(e‘f(s),~-- fL( )) on T'Ny,) for s € [1/k,2/k] as follows:
(1, el™) = Aus) (el e ) s € [1/k, 2/,
For i = 2,..., (k — 1), we define (2, --- ¢%*)) on TN, for s € [i/k, (i + 1)/,

»€n—1
inductively. Then, we get an orthonormal frame (6‘11(5), - 7efl(_s)l) on TNy (s which
is continuous with respect to s € [0, 1].

Now let ) be the inward normal unit vector of 99 at q(s) and define
Bla(s)) = (e, et ).

Then, we have maps 1. 4(s) and W_ () satisfying properties (i)-(iv) in Proposition
3 except the properties involving the derivatives with respect to X = ¢(s). We will
use these properties to get a lower bound in Proposition 18.

Lemma 2.1. Suppose that condition (H3) holds. For X € N1\ N, let z € 99,
with |z — X| < s for some constant s > 0. If |y — \Ilgﬁ((z)| < ¢/ e, then for small
e >0,

(Pex(y) = 2) = B(X)(y — ¥ x (2)| < O(Ve).
Proof. By (iii) in Proposition 3, |\P;§((z)| < %= Then, if [y — \Pe_s((zﬂ < ¢/,
it holds that for small € > 0, |y| < 2¢/¥/e. We write

Uk (2) = (2% (2)), Uk (2)n) € RPTH xR
Then, we see that

1 — (P2 x ()

0., —2=E(X :
xw) ) ynt = (U5 (2))nn
yn — (U5 () + e x (1) — e x (T4 (2)))
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Therefore, for small € > 0,
(Ve x(y) —2) = B(X)(y — ¥ x(2))
<[ex (8] + e, x (225 (2)))]
Sé[M(€|y/|)2 + J\Z[(E1 i a)g] < BMc? e,

O

Proposition 4. Suppose that condition (H3) holds. Let U € § and ¢. be the cut-
off function in the definition of approzimate solutions. Let X € N2\ N. and
|z — X| < s for some constant s > 0. Then

[(@U)(- = 2) 0 We x — (6U)(- = U5 (2) |1 (R2 nB0.1/2)) < O(VE).

Proof. Because supp(¢.) C B(0,1/¢'/3), by (iii) in Proposition 3, the support
of (¢cU)(- — z) o U, x and the support of (¢p.U)(- — \I/;}X(z)) are contained in
B(0,2/e/3) NR7 for small € > 0. By Lemma 2.1, for |y| < 2/,

|(Wex(y) — 2) = B0 - 975 (2)| = 0(¥3),

We note that ¢.U is radially symmetric. By the mean value theorem, there exists
g=t(T.x(y) —2)+ (1 —-t)E(X)(y — \Ila_ﬁ((z)) with ¢ € [0, 1] such that

|(6-0) (e x () = 2) = (V) = ¥k ()] < IV (6-0) @) O(V2).

There exists § = (V. x(y) —2) + (1 —t")E(X)(y — \Ils_ﬁf(z)) with ¢ € [0, 1] such
that

\V(@U)(\Ps,x(y) —2) = V(6U)(E(X)(y — \If;}((z)))] < |D2(¢.U)(§)|O(5).
On the other hand, we see that in the support of (¢.U) (¥, x(-) — 2),
DV, x(y) = BE(X)(I + O(ely])), DU, x — BE(X)| = O(Ve2).

We note that for a radially symmetric function h, (VA)(y)(E(X))T = (VR)(E(X)y).
Therefore, by the decaying property of D*U (|a| < 2), we can see that

[(@U)(- = 2) 0 We x — (6U)(- = U x (2)l| 1 @z 0B (0,r/))
=[[(¢eU)(Ve,x(-) — 2) — (¢U)(- — (Z))||L2(an3(o r/e))
+ IV (#U) (Ve x () — 2) E(X) — ( ¢U) (- — V5 (2)) ]2 (RTNB(0,r/€))
+ IV(¢eU) (Ve x () — 2)(D¥e x — (X))HLZ(]R” AB(0,r/e))
=[(¢U)(Ve,x(-) — 2) — (¢U)(- — ¥ x (Z))HL2 anB(o r/e))
+ [ V(9U) (Ve x () = 2) = V(GU)(E(X) (- = ¥ 5 (2))) | 2@nnB0.r/2)
+ IV(¢eU) (Ve x () — 2)(D¥e x — (X))||L2(Rnn3 0,r/¢))
<O(Ve).

This completes the proof. O
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3. Center of mass. For X € 0Q., we define
S(X)={Ux € C*(Q.) | Ux(z) = (¢.U)(z — X),U € S}.
We see that Z1°% = |y cpr10a S(X) where V104 = 1N For § > 0, we define

Ns(Z2M%) = {ue HY(Q.) | inf |u—ov|. <5}
veZ10d

When ¢ is sufficiently small, by the uniform exponential decay of least energy
solutions, there exists £ > 0 and Rg > 0 such that, for all u € S(X), X € 99.,
ull gy (B(x,Ro)n0e) = & Nlulla(@o\B(X,Ro)) < €/4 (33)
Here, £ and Ry are independent of small . We take a small positive constant v > 0
such that
v < &/20 (34)
and a function § € C§°(R, [0, 1]) such that §(z) = 1 for |z| < 2y and 6(z) = 0 for
|z] > 3v. We take a constant

50 € (0,7) (35)
For u € HY(Q.) and X € 99, we define

de(u, X) =0 (veié{l(fx) flu — U”Hl(B(X,RO)ﬁQE)) .

The function d. is continuous with respect to X since the Lebesgue measure of a
set B(X, Ro)AB(X', Ry) and |[(¢:U)(z — X) — (¢U)(z — X')||c converge to zero
as X' — X.

Let X,Y € 09, with |[X — Y| > 2Rg. If u € N5, (S(Y)), then

inf — > € —£/4— 6 10~; 36
velg(X)HU v (B(X,Ro)N0) = € — &/ 0> 107; (36)

thus d.(u, X) = 0 for u € Ns,(S(Y)). Then, for u € N5, (S(Y)),

f(,m& de(u, 2)z
faﬂg de(u, 2)

is well defined and contained in the convex hull of 9Q. N B(Y,2Ry).
For u € Ny, (22%9), we define a center of mass Y. (u) by

faﬂs de(u,z)z
fBQE de(u, 2) ’

where maq, () is the point on 09, which is closest to & among points of 02.. For
small € > 0, mpq, is well defined in 2Ryp-neighborhood of 0. and center of mass
is well defined. Then Y. is a continuous function in Nj,(Z1°?) and we have the
following properties for small € > 0.

Ts(u) = ToQ, < (37)

Proposition 5. (i) For u=U, +w € N;,(S(2)) with U, € S(z) and ||w| < do,
|Te(u) — 2| < 3Rp if € > 0 is small.

(ii) If u,v € N, (Z19) satisfy
u(z) = v(z) in Q. N B(Yc(u),8Ro),

then Yc(u) = Yo (v).
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Proof. Since we have proved that for u € Nj,(S(Y)),

Joq, d=(u, 2)2
faQE de(u, z)
is contained in the convex hull of 9Q. N B(Y,2Ry), (i) follows.

For the proof of (ii), let u € Ny, (S(X)),v € N5, (S(Y)). Then | X —T(u)| < 3Ry
and ||u||H1(B(T5(u)74RO)mQ<§) > f Thus it follows that ‘Y - Ta(u)| < 5R0 The
support of d. (v, -) is contained in B(Y,2Ry). Moreover d. (v, z) = d:(0, 2) if v = 0 in
Q.NB(z, Ry). Since u = v in Q.NB(Y:(u),8Ry) D QNB(Y,3Ry), de(v,-) = d-(u,-)
and Tc(u) = Tc(v). O

4. Invariant neighborhoods. For § € (0,68), u € Ns,(Z1°?) and v € H* (),
we define

|Vo|? + v?da.

‘U Su = /
Q.NB(Ye(u),1/V/3)

For § € (0,0¢) and 7 € (0,6), we define
G2(210) = {u e N5(21°0) | |u — v, 5.4 < 72/2 for some z € N2 v, € S(2)
and |Vul? + u? — 2F (u)dx < r?/2}.
QA\B(Ye(u),1/V3)

Proposition 6. There exists a constant ¢ = q(6) > 0 such that lims_oq(6) = 0
uniformly for small € > 0, and that for small ¢ > 0 and u € Ns(Z10%),

(1—@/’ |Vm2+dwx§/’ \Vul? + u? — 2F (u)dz
Q\B(T-(u),1/V3) QA\B(Te(u),1/V3)
(38)
(I+ ‘Z)/ [Vul® + u?dz > / |Vu|? + u? — 2F (u)dz.
Q\B(Y<(u),1/V3) Q\B(Y<(u),1/V3) (30)
39

Proof. Note that for any small ¢ > 0, there exists C' > 0 such that |F(t)| < ct? +
CtP+1. Thus, we see that

/ F(u)|dz < / cu® + CuPtdz.
QA\B(Te(u),1//3) Q\B(Ye(u),1/V5)

From the Sobolev embedding theorem, there exists C’ > 0 such that

(p+1)/2
/ M“mgc’/ \Vu|? + u?dx :
QN\B(T(u),1/V9) QNA\B(T(u),1/V39)

The constant C” is independent of small § and small ¢ > 0 (refer to [1, Theorem
4.1]). Then, since above constant C’ is independent of small § and ¢ > 0, the
inequalities (38) and (39) hold with lims_,¢ ¢(d) = 0. O

We choose 6 > 0 so small that ¢(§) in Proposition 6 satisfies q(6) < v/2 — 1.
Proposition 7. Let c € (0,1], ¢ € (0,1/2). If § is small enough, then for small
e >0,

G20 C Nop(Z299) and Noo(Z19%) €GB, o o(2109)
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Proof. If u € G"(sl_q)cé(ZEwd)7 it follows from (38) that
/ |Vul? + u?dr < (1 —q)(cd)?/2. (40)
Qe\B(Tc(u),1/V3)
Note that for some 2 € V1% v, € S(2),
/ IV (u—v.)> 4+ (u—v.)%dz < ((1 - q)cd)?/2. (41)
QNB(Te(u),1/v6)

We note that u € Ns(S(Z2)) for some Z € N9 Then we see from Proposition 5
that |2 — YTco(u)] < 3Rg. If |z — 2| > 2Ry, it follows from (36) and (41) that for
1/V§ > 4Ry,

lu — vzl B (@.nB(z,Re)) = vz — vzllH1 (Q.nB (2, Re)) — U — VIl H1(0.NB(2, R)) > 20;

this contradicts the fact u € Ns(S(Z)). Thus |z — Z| < 2Ry. Then, it follows that
T-(u) — 2| < 5Rp. Now we see from (40), (41) and the decay property of v, that
for some C, ¢ > 0,

||u—vz 5

— 2 _ 2 2
N R AN CS Y CRL AL

<(1 - q)(e8)?/2 + (1 = q)eb)*/2 + Cexp(—¢/V3) < (cb)*.

Thus for small § > 0, u € N,s(21°%). This proves the first inclusion.
If u € Nos(2209), it follows that

lu — (¢U)(- — 2)||2 < ('6)? for some z € N1 U € 8.
From Proposition 5 and the exponential decay property of U, we see that for some

C,c>0,

/ V(U = )+ (90 — 2))dx < Cexp(~2/V)
QE\B(TE(U’)71/\/S)
Then it follows that for small § > 0,

/ |Vul? + u?dz < (14 q)('0)2.

QN\B(T(u),1/V39)
From (39), we see that
/ |Vul? +u? — 2F (u)dz < ((1 + q)c6)>.
Qe\B(Ye(u),1/V3)

This implies that u € G° (2104) ; thus the second inclusion follows. O

(14+9)V2c's
5. An operator minimizing a tail. For b > 0 and u € H'(£).) satisfying
ulsy = [ Vuf? 4 u? <022,
Q:\B(y,1/V?)

we consider the following minimization problem:

1
I3, (u) = inf {/ S (Ve +0%) — Flo)dz | v e H;b(u)} ,
Q\B(y,1/V9)
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where
H;ib(u) = {v e H'(Q.\ B(y,1/V9)) [v[5, < b%,v = u on B(y, 1/\/5)} .
A minimizer of I?‘j’b(u) is a solution of this equation.

AvaJrfgu) =0 on Q.\B(y1/V9),

5, =0 on 99\ B(y1/V0) (42)

v =u on Q. NAIB(y,1/V9).
Then, we have the following result.

Proposition 8. There exists by > 0, independent of small €,§ and y € 0S),, such
that if
/ |Vul? + (u)?de < b?/2 < b3/2,
Q:\B(y,1/V5)
then for small € > 0, there exists a unique minimizer v, = fug";’“ of Ig’b(u) n
H57b(u) satisfying equation (42). Moreover, there exist ¢1,C1 > 0, independent of
small 8, > 0, such that
1 _ 1
ve(z) < Crexp(—ci(jlr —yl— —=)) in {xe€Q. | —

V6 V6

Proof. Because the condition (f1) and (£2) hold, if b > 0 is sufficiently small, then

+1< [z —yl}

1
/ —(IVul? + u?) — F(u)dz < 3b*/8.
Q\B(y,1/v3) 2

On the other hand, for v € Hg)b(u) with fQE\B(y,l/\/S) V| + vide = b2,

1

/ LV0? + 02) = F(v)de > 362/,
Q\B(y,1/v5) 2

Thus, I;b(u) is attained by a minimizer v, with fQE\B(y,l/\/S) |Vve|? + (ve)?dx < b2,

Uniqueness and decay property can be proved by similar arguments in Proposition

2.3 of [6]. 0

We see from Proposition 5 that for u € G§(Z1%9), there exists a z € N1
satisfying
|z = YTc(u)| < 3Rg and ||u — (¢ U)(- — 2)]|e < 6.
When § is sufficiently small, we see that for any u € G$(210%),
/ |Vul|? + u?dr < §2.
lz="e(w)|>1/V5
For small 6 > 0, Proposition 8 holds for b = 26. We define 7.(u) by

u(z) for z € Q. NB(Yc(u), %)
Te(u)(z) = { UETs(u),&“(x) for z € Q.\ B(Y:(u), %:) (43)

By (ii) in Proposition 5, we can see that for small 6 > 0, Tc(7:(u)) = Tc(u)
and 7.(u) € G%(21°?) for u € G%5(Z19), ¢ € (0,1]. From the uniqueness of tail-
minimizing operator, we can see that 7. is a continuous map from Gg(;(ZgOd) to
G25(Z19) for each c € (0,1].

By standard elliptic estimates, we can see that the operator 7. satisfies the fol-
lowing decay estimates.
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Proposition 9. There exists constant C1,c; > 0 independent of small e,§ > 0 and
u € G(Z1%) such that

V7e(u)l, ID*7:(u)| < Crexp(—er(je — Te(u)| = —= — 1))

S
7
in{zx e, | % +1< |z —"T(u)l}.

Proof. We will estimate W29 —norm of 7.(u) in a small neighborhood B(z, 5/2)N <
for a point z € Q. with % +1< |z=".(u)]. If B(z,8) C {z € Q| % +1<
|z — T (u)|}, the elliptic estimates in [20] implies the our conclusion. Thus it suffices
to consider a case z € 0f).. By a translation and a rotation, we may assume that
z = 0. Then for small s > 0, there is a C* function ¢ defined on B(0,s) NOR" with
1(0) = V»(0) = 0 and such that near 0, 0€). is given by

{0/ | ¥/ € B(O.5) N oRY ).
Then, define ¥ = (Uy,--- ,¥,,): B(0,s) ﬂRﬁ — Q. by

oy, .
Yji = Yn7—Y fOI‘]:].,"',TL—L
W) =4 YTy, W) e
yn + ) for j=n.

Then ¥ is a C3 map with ¥(0) = 0 and D¥(0) = I. Hence for small s > 0, ¥ is a
diffeomorphism between R’} N B(0, s) with its image N C €2.. Note that

8\11 / al/) / &P /
a. 70 =\~ 353 [ . ) 1
L) ( o, ) o9, ) )
is an inward normal vector of 9. and
0% 0% o
1=, 220 —u, N 9%
oy W) - Dy20y1 Iy W)
_ ﬂ _ >y () _ai( ")
D¥(y) = I 9y 0y, I ooy ys
o0 o0 1
o ys

Let @ : N — R NB(0,s) = B4(0, s) be the inverse of ¥. By setting w = 7.(u) oV,
we can transform equation (42) in B(0, s) N Q. to the following equation
0w

T g

1<ij<n

bl — et flw) =0 in B (0.5),
i=1

7

where
aij(y) = VOi(¥(y)) - VO;(¥(y));
bi(y) = (A®)(¥(y)).

Next we will use a reflection and make an equation in B(0,s). We see that
Vo, (¥(y',0)) is orthogonal to 9. because ®,, =0 on Q. Fori=1,---,(n—1),
V&,;(¥(y',0)) is orthogonal to the surface { (v —y, VY (v'), yn+¢(v')) | ¥’ € B(0,s)N
OR%,y, > 0 and fixed y;} at (3,9 (y’)). This implies that for i = 1,--- ,n — 1,
V®,;(T(y',0)) is in the tangent space of 9, at (v, (y’)). Thusfori=1,--- ,n—1,

V(I)Z(\Il(y',())) ' vq)n(\l/(y/7 0)) =0.
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Hence a;,(y) = ani(y) = 0 for y, = 0,4 = 1,--- (n —1). Now for (¢v/,yn) €
B(Oas)vyn < 07 we define afij(ylvyn) = aij(y/a |yn‘) if Zv] <n-— 1; ain(y/ayn) =
—ain(s [yn]) if i <0 =15 GV, Yn) = @nn(V', [yn]). We also define b;(y,y,) =
bi(y, lynl) if i <n—1; by (y,yn) = —bn(y', |ynl|). For the solution w, we define w

on B(0,s) by @w(y', yn) = w(¥', |yn|). Then @ is a solution of

Pwo <y, 0w
a5 = bily) 5 — o+ f(w) =0in B(0,s).
1<i,j<n ay1ayj i 8y1
Since a;; is continuous and b;, f(w) € L™, we see from [20, Theorem 9.11] that for
any ¢ > 1, w € W29(B(0,s/2)) and

l@|lw2a(B(0,s/2)) < CUID|La(B(0,5)) + IF (@)l La(B(0,5)))5

where the constant C' depends only on n, g, s, A, A. Here A is the L> bound of a;;, b;
and \ = i?f{zzjzl Qijpif; | >ory p2 = 1}. This implies w € C*(B(0,s/2)) and
u € CH*(Q) and
@]l cr.a(B0.5/2)) < CUDN Lo (B(0,5)) + 1 (@) 22 (B(0,5)))-
From exponential decay property in Proposition 8, we see that
_ _ 1
10| o (B(0,5)) + I1f (@) || Lr(B(0,5)) < C1exp(—ci(|z — Ye(u)| - 7 1)).

for some constants C7, ¢j independent of §, €, z. This implies the exponential decay
of V7e(u).

Now, we will estimate C? norm of w by Schauder estimate. Note that a;j is
Lipschitz continuous and Bn(y)%ﬂ is Holder continuous in B(0, s/2) because w €

Cl2(B(0,s/2)) and 3711 =0 on y, = 0. @ is a solution of

Pw A Ow _ 0w
> ai) s — Y bi(y)5— —w=—f(@)+bn(y)5— in B(0,s).
1<ij<n dy;y; im1 yi WYn
By Schauder estimate [20, Theorem 6.2],

_ _ _ - ow
‘w|C2"1(B(O,s/3)) < C(|w‘CO(B(O,s/2))+‘f(w)|CO’Q(B(O,s/2))+‘bn(y)£|co’a(3(0,s/2)))a

where constant C' depends on n, a, A, s and C®-norm of coefficients. Since C' norm

of a;j, b; is uniform with respect to z, the constant in Schauder estimate is uniformly
bounded with respect to z. Since ||@0||c1.0(B(z,s/2)) < Cexp(—c(|z — Tc(u)| — %)),

we get the decay estimate for | D?7(u)|. O

6. An initial surface and its energy estimate. By condition (H1),
H(z) <mfor z € L. (44)

Using a deformation through the gradient flow in (4) and Proposition 1, we may
assume that for some ag > 0,

H(z) <m—ag for z € L\ NY. (45)
We take an element U € S satisfying

min / VT (3)Plyldy, it m > 0,

/ VU (y)Plyldy = { UeS T

e wax [ [VO()Plyidy. it m <0,
UeS JRrn

(46)
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and define an initial surface A, : (0,00) x L — H(Q.) by

Ac(t,2)(x) = pe(x/t — 2/te)U(x/t — z/te)
for some U € S§. We define A.(0, z) = 0.
Note that there is a large T' > 1, independent of small € > 0, such that, for all
z€ L, T.(A(T,2)) < —1.

Proposition 10. It holds that
1 -2
lim T (A (t, 2)) = ~ (1" 72 — Lt”)/ \VU|? uniformly for t€[0,T),z € L,
e—0 4 n R™

and that
m |Sn—2 |

1
Ce = max FE(AE(t,Z)) = 7F(U) + €n7_~_1|5,n7_1| .

2
d .
t€[0,T],2€L 2 B VU (y)|*|yldy + o(e)

Moreover, for any small o > 0,
limsgpmax{FE(Aa(t,z)) |te[0,T)\(1—0,140),z€ L} < @,
e—
and for small v > 0
max{T'.(A.(t,2)) |t €[0,T),z € L,z ¢ N} < c. —ve
if € is sufficiently small.

Proof. For the estimates for lim._,o ' (A:(t, z)) and c., refer to [6, Proposition 3.1].
The third estimate comes from the estimate for lim._,o ' (A: (¢, z)). Combining the
estimate for ¢. and (45), we get the last estimate. O

Now we take &; € (0, dp) so that Proposition 7, Proposition 8, Proposition 9 and
all previous results hold for § € (0,d;). By Proposition 10, for small v > 0, there
exists o = o(v) > 0 such that for small £ > 0, then

NG

max{l.(A:(t,2)) |t €[0,T]\ (1 —0,1+0),z€ L} < % - . (47)

We can take () > 0 so that o(y) — 0 as v, — 0.
Note that for z € L and t € [0, 7],
supp(Ac(t, 2)) C B(z/e, t/e¥/?) C B(z/e, T/e'/?).
We take a sufficiently small Ty € (0,1) so that I'.(A:(To, 2)) < T'(U)/4 for z € L.
We may assume that dy is small and that definition (37) and Proposition 5 hold for
Nas, (2194). Now, we extend the center of mass Y. on N, (21°%) to a continuous
function on
Nsy (Z10M U{AL(t,2) | t € [Ty, T],z € L}
so that for A.(t,z) € Nas, (2109), Y. is defined by (37) and for any ¢ € [Ty, T] and
z €L,
|Te(A:(t,2)) — z/¢| < 4Ry,
and that
YT.(A.(t,z)) = z/e in a neighborhood N of 9([Ty, T] x L).

Then we can take dy € (0, min{d;,1/(8Rg)?}) so that for § € (0,82, t € [0,7] and
z €L,

/ VA(t,2) + |Au(t, 2)2da < 6% < B2)2.
QS\B(TE (Aa (t,z)),l/\/g)
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Then we apply the tail minimizing operator 7. in (43) for A.(t,z) with the ball
B(Y.(A.(t,2)),1/4/§) and define

A(t,2) = T (A (t,u)).
If A.(t,2) € N5, (22°7), then A.(t,2) € Nas,(Z194). In this case, we see from (ii) of
Proposition 5 that
YAt 2)) = To(Ad(t.2)).

Then, defining the center of mass for A.(t,z) by

t
i o To(A(t,2)), if Ac(t,z) € Ny, (2104,
Te(A:(t,2)) = { Yo(A(t,2)), if Ac(t,2) ¢ Nzo (2209), )

the center of mass Y. is continuous on
N (21 U{A.(t,2) | t € [Ty, T),z € L}
since Yo (A:(t,2)) = Yo(Ac(t, 2)) for all t € [Ty, T], z € L. Thus we see that for any
t €Ty, T] and z € L, )
|T-(A(t, 2)) — z/e| < 4Ry, (49)

and that

T.(A.(t,z)) = z/e in a neighborhood N of &([Ty, T] x L). (50)
Moreover, when we apply 7. for A.(t,z) with B(YT.(A.(t,2)),1/\/3),

Ac(t,2) = T (Ac(t, 2)).

We define 3
b, = T.(AL(t, 2)). 51
e te[(ﬂ%ﬁeL <(Ac( Z)) ( )
We see from the energy decreasing property of the tail minimizer operator 7. that
1 m |S" 2 o
b. < =T VU d . 52
<GP+ e (g [ VORIl + ofe) (52)

7. Gradient estimate. We define
Ie=T)°={uec H(Q) | T(u) <c}.

Then we can prove the following gradient estimate.
Proposition 11. There exists 03 € (0,02) such that for § € (0,d3) and 0 < 1 <
ro < 0, there exist p = p(d,r1,r2) > 0 and g9 = €9(d,7r1,72) > 0 such that for all
€€ (0750)7

inf{|[TL ()] | u € T 0 (G, (2200 \ G2, (21°)) , Te(u) € N2} > p,
where ||TL(u)||% is the operator norm of T.(u) on HY2(Q.).
Proof. To the contrary, suppose that for any d3 € (0, d2), there exist § € (0,03) and
0 < ry < ry < 4 such that there exists a sequence of elements u. € G?_(Z1°9)\
G2 (2199) with Y.(u.) € N2¢ such that liminf. o |T'.(u.)| = 0. Without loss
of generality, we may assume that lim._[[L(u.)| = 0. Since u. € G? (210%)
and Yo(u:) € N2, there exists x. € 9. with dist(z., N??) < 3Ry such that

e = (U (- — x2) + we for some U, € § and w, with ||w.||c < 0.
Suppose that there exist z. € B(x.,1/e'/3)\ B(z.,1/2¢'/3) and R > 0

lim sup/ (ue)?dz > 0.
e—0 QcNB(ze,R)
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We can assume that, up to a subsequence, €z — 2y as € — 0. Then one of the
following two cases holds :

(case 1) limsup,_,, dist(z., 09.) = oo; (case 2) liminf,_,q dist(ze, 082:) < o00.
In (case 1), we see that u.(- + z.) converges weakly, up to a subsequence, to some
w € HY(R™)\ {0} which satisfies

Aw(y) —w(y) + f(w(y)) =0 for y € R

In (case 2), we find z. € Q. with |z. — 2| = dist(z., Q) and define y. = ez..
We may assume that lim._,qy. = yo € 9. Then, for each small € > 0, as in the
proof of Proposition 9, we can find a diffeomorphic map ¥, : B(0,r) R’ — Q such

that ¥ (0) = y., V. (0) € SO(n), U.(B(0,r) NORY) C I and J¥=(y',0) LIS for

(v/,0) € R" xR with |y/| < r. We define U, : B(0,7/c) — Q. by ¥ (y) = %\ile(sy).
We find a function x. € C§°(R™) such that x.(x) = 1 for || < 1/y/e, x(z) =0
for |z| > 2/+/e and |Vx.| < 2y/e. Then we see that (x.(- + zL)u.) o ¥, converges
weakly to w € H'(R") \ {0} satisfying

0
Aw —w+ f(w) =0 in RY, 2 —0on OR".
Yn
In both cases, it follows from the Pohozaev identity that for U € S,

1 1 r
—/ |Vw|*dy = 7/ |Vw|? + w?dy — [ F(w)dy > ﬂ.
n R™ 2 R™ R™ 2

+ + +

From the weak convergence of (x.(- + z.)u.) o ¥., we see that for large R’ > R,

liminf/ Vue|?dz > “T(U).
B(2/, RN 4

e—0

For 65 € (0,1.,/2T(U)), we get a contradiction. Thus we conclude that for each
R >0,

lim sup / ue)?dr = 0.
€20 e B(xe,1/e/3)\B(z.,1/2¢1/3) JQ.NB(2,R)
Then we see from [27, Lemma 1.1] by P.L. Lions that

lim inf lu. [Pt dz = 0.

e—=0 /ﬂsmsuPP(V‘ZSs(‘IE)I)

This implies that for ul(z) = ¢-(x — v )uc(x) and u?2 = u. —u

lim F(u.) — F(u}) — F(u?)dr = 0.

e—0 o €

Here the function ¢. € C§°(R™) satisfies (7). Note that

T(ue) = Teul)+Te(u?) + / (6eue) (1 — b2)ue)de

+ /Q V(peue) - V((1 — ¢e)u.)dx — / F(u.) — F(ul) — F(u?)da.

€

Since |V¢.| < 3¢/3, we deduce that as ¢ — 0,
Le(ue) = Fg(ui) + FE(“?) +o(1).
We see from (f1),(f2) and Sobolev’s inequality that for some C,c¢ > 0,

1 n
Te(u?) > Z/Q |Vu?|2+lu§|2dx—c/9 02|72 da
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> |l = CelluZ |22

o~ =

Thus, taking a small 3 > 0, we see that for 6 € (0, d3),
1
To(us) > To(ul) + §Hu3||§ +o(1). (53)

We recall a flattening map ¥, ,_ : R% N B"(0,7/e) = Q. in (22). Then, w! =ulo
W, .. converges weakly to a nonzero function W € H'(R’) \ {0}. As before, we see
that for § € (0,63) and R > 0, lim._,q fQEQB(qE,R) (ug)?dx = 0 if lim. o |z — q.| =
co. Using again [27, Lemma 1.1], we see that lim._o [, F(ul) = [;. F(W). Since
e +
I (us) = 0 as € — 0, we see from (23) and (ii) of Proposition 3 that
w n
aiyn =0 on 8R+

Then, from the weak convergence of ul o U, ,_ to W, we see that

AW —W + f(W) =0 in R,

1 .
liminf T, (ul) > §F(W),

e—0

where W € H'(R") is the even reflection of W. Thus we see from (53) that
lim. ¢ [lu?]]: = 0 and W = U(- — yo) for some U € S and yo € IR%. Since
supp(ul) C B"(z.,2/e'/?) N Q., it follows from (23) and (24) that

R A A
R Q

By Proposition 4,
1(6-U)(- = Werw. (90)) © Ve, — (@U)( = y0) | iy < O(V?).

Since supp ¢. C B"(z.,2/c'/3) N Q., it follows from (23) and (24) that for some
C >0,

(S0 (-=Te o (o)) —tid e < [[($T)(-—We s (30))oWe . —uloWe || g1 (any+Ce'/?.
Then, as ¢ — 0,
1(6=U)(- = Ve . (y0)) — ull|-
<(PU) (- = Ue. (0)) © Ve, —ul 0 ey || 1y + O("/?)
<[[(@U)(- = Ve, (40)) © Ve, — (0U) (- = yo)llr(rry)
a0 W, — (6:U)( — yo)llarsen) + O(H?)

|Vul|? + (ul)?dx + o(1) for small £ > 0.

=o(1).
Since dist(z., N2?) < 3Ry, this implies that for any small s € (0,0), u. € GS(Z1%9).
This contradicts to the fact u. ¢ G2 (Z1°?) and completes the proof. O

8. Transplantation flow. Define
wi =sup {|DyVx(y)| | X € N\ Ny € B(O,r) NRY},

we = sup {|Dy(Vx) " (y)| | X e N'YN\N y € Ux(B(0,r)NRY)}
and w = max{wiwa, 1}.
Here, |A] is the operator norm for a matrix A. Taking a smaller r > 0, we may
assume that
w < 2.
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Note that
o = sup {1 Dy e x ()] [ X € N2\ Ny € B0, r/e) NRL),
w2 = sup {|Dy(‘1’s7X)71(y)| |X € Nslod \'/V:-:day € \IIE,X(B(Ovr/E) N Ri)}
We find a function p; € C2(99,[0,1]) such that p;(X) = 1 for X € N74\ N3¢
and p1(X) =0 for X € N2 U (9Q \ N3%). For § € (0,d3), we also find a function
Py € C*(GS(2L0),[0,1]) such that pd(u) = 1 for u € Gé/ﬁw(zlod) and p3(u) = 0
for u ¢ G5/4 (Z194). We fix I; € (0,1) so that for any [ € [0,1;] and X € 95,
distoo (®(1, X), X) + [®(1, X) — X| < min{r/10,d/10}, (54)

where disfag(X1,X2) is the distance between X; and X, in 092. We define a flow
function ® : [0,1;] x 9Q x HY(Q.) — 09 by

B(1, X, u) = B(py (X)pd (), X).
We choose a radially symmetric function ¢. € C§°(R™,[0,1]) such that
we(x) =0 for |z| > r/2¢,p.(x) =1 for |x| <r/3e and |Vp| < 10¢/r. (55)
Now, we define a transplantation operator
P.:[0,1;] x G3(2200) — H* ()
by P-(I,u) = u when Y.(u) ¢ N3¢\ N2¢ and
PU0@) = (9l = Te@)) o Vom0 ¥k oy 00 (@) (56)
+ (1= ez = Te(u))u(z)
when Y. (u) € N34\ N24. Here, we define
(0= (- = Te(u))u) 0 Ve (u) © \P;é(l’grs(u),u)/g(x) =0
ifz ¢& 9,5, ET (w)u)e(B(0,7/€)). We note that O(l,eYe(u),u)/e = Yo(u) if
T.(u) € (N \ NV24). By Proposition 3, we see that for a € (0,1,/1000),
B"(Ye(u), (1 —a)r/e) NQe C W,y (u)(B"(0,r/e) NRY).
Thus, the operator P is continuous.

Proposition 12. There exists a constant Ry > 0, independent of small € > 0 such
that for 6 € (0,83) and u € GS(Z109),

1Yo (P.(l,0)) — B, X (), u)/e| < Ry

Proof. By the definition of cut-off functions p1, p, we may assume u € G6/4w(210d)

and Y.(u) € N3 Let X.(I,u) = ®(1,eY.(u),u)/e and X. = Y.(u). By Proposi-
tion 5 and Proposition 7,

[u—(¢eU)(- = 2)[[c <6/4(1 — q)w (57)
for some U € § and z € 99, with |z — X| < 3Ry. We claim that
| Pe(l,u) — (60U (- — \Ile,Xg(l,u) ° \Ils_ﬁ(e (2)lle <. (58)

Suppose that the claim is true. Then, we see from Proposition 5 that
ITe(P(l,u)) = e x. ) © Yo x. (2)| < 3Ro.
By (iii) in Proposition 3,

_ 1+a 1+a
|X6(l7u) - \I’E,Xg(l,u) O\IIE ( )‘ < (1 +a)|\IJaX ( )| < li‘X Z| < 3RO .
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Then, taking Ry = 3Ro 2, the conclusion follows by (58).
To complete the proof, we prove the claim (58). From definition of P.(I,u), we
see that

1Pt w) = (@) = Ve x (1) © Uo ., ()l
<1 = poyulle + [ (pew) 0 Wex, 0 WY (1 — (@) — )0 Wex, 0T e
TGV~ 2) 0 Wex, 0WT 0 = (6D — Ve x ) 0 Wk ()]l
By (57) and the bound of Ve,

1@ = geyull < (1 +s/r>(f. (59)

q)w

Since the Jacobian determinants of coordinate transforms W, x_, \Il; X.(Lu) BT€ 1

and |DV,, XE||D\IJE X (L)
C > 0, independent of small >0,

I(peu) 0 Wex, 0 U5 10y = ($U)( = 2) 0 Werx, 0 W5 e
<V — (6U)(- = 2)D¥erx, DUTY o 220
+ o) = (9:U)( = 2y (©0)
< ]
“4(l—g)
By the triangle inequality, it follows that
[(@U)(- = 2) 0 We x, 0¥ — (0eU)( = e x, ) © P2 x, (2))]e
<[[(@U)(- = 2) 0 Ve x, 0 W ig ) — (@) =V % (2)) oW % plle (61
F(@U)( =02 % (2)) 0 UK 1y — (8U)( = e x_ (1) © U2k (2)) e
By Proposition 4, it follows that
1(6U)(=2)0We x, 0 Ky = (0eU)( =V k (2))0 Uk (1 plle < O('/?). (62)
Since |z — X.| < 3Ry, it follows from (iii) in Proposition 3 that

(1+a)
(1—-a)
Then, it follows from Lemma 2.1 that if \\IIE_;E(Z w(T) — WQ§2(2)| < Ce /3,

| < w, we see from a change of variables that for some

+ Ce.

[ Xe(lu) = Ve x_quy 0 Vo k. (2)] <3 Ry. (63)

(@ = Ve x. ) © U2k (2)) = E(Xc(Lu) (W1 1) (@) — ¥k (2)| < O(E?).
(64)
Then we see that for E. = (E(X.(l,u)))™!, by the triangle inequality,
(

1(6eU)( = U2 (2)) 0 Uy 10y — (@U)( = Ve x. 1) © Vo x_(2)le

<NV GDY Tk () = ok (DEL = V(6.U)( = Ve x 1y © Uk (2|2
IV (2 () = ,E<z>><Dw;X () = (B 0) DIz
F@U) = Wk (20) 0 Wk = (6:U)( = Ve x 1 0 Uk (D) 220

=TI +TIT+TIII.
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To estimate T'II, we see that DW_ % X.(, )( xz) = (I + O(elx — Xc(I,w)]))EL. Since
supp(¢-U) C {z| | X, lu)( x) — \IIE)1 (2)] < Ce~1/3}, we see from (63) that for
some C’ > 0, supp(¢:U) C {z| |z — X.(I,u)| < C'e~1/3}. This implies that

|D\I/5X (, u)( ) E(Xs(lvu))il‘ = 0(52/3)

for z € supp(¢.U )(\IIE ; 0 u)( )— \Ileke(z)) Then, we get an estimate that for small

e>0,TII =0(¢e 2/3) For estimates T'I, T'I11, we note that for a radially symmetric
function h and E € O(n), h(Ex) = h(z) and Vh(z)(E)~! = (Vh)(Ex). Then, using
the mean value theorem with (64), we deduce that TT,TIIT = O(c'/?). Thus, we
get

16D~ U2k (2)oUk = (6-0)(— Ve x 1y 0W k() = OE). (65)
By (59), (60) and (65), the claim (58) holds. This completes the proof. O
Proposition 13. There exists 64 € (0,03) such that if § € (0,04),¢c € (0,1] and
u € G05/4M(Zlod) with Yo (u) € N3¢, then P.(I,7.(u)) € G3cé/5(210d) for 1 €10,1]
and small € > 0. Thus, for § € (0,64) and small ¢ > 0, P.(l,7.(u)) € G§(Z1°%) if
u € G(Z199),1 € 10,14,

Proof. In the proof, let Yz = Yo (7.(u)), Ye(l,u) = ®(1,eYs, 7o(u)) /e and g-(I,u) =
Y. (P:(l,7-(u))). We note that Yz = T.(u). From Proposition 12 and the definition
of l;, we know that for [ € [0,l;] and small £ > 0,

g-(l,u) € N2% and |Ye(l,u) — Ye| < 7/5¢, |g-(l,u) — Ye| < r/5e.

Since u € Gfy 4, (22), it follows that 7. (u) € Gy, (22°) C Nes/awi—q) (22
and
2 2 1,¢0 .,
V7 (u)|” + 7 (u)? — 2F (1 (u))dz < = (—)>.
Q\B(Y:,1/V3) 2 4w

Thus, there exists Y € N2¢ and U € S such that |Y. — Y| < 3R, and
I72() — (60 — Y]l < c8/4e0(1 — g) (66)
Since (- — Yz) = 1 in B(Y;,r/3¢), |g:(I,u) — Y| < r/5¢ and
distoo(®(1, X), X) + |®(1, X) — X| < min{r/10,d/10} for I € [0,1],
we see that for small € > 0,
IPe(l 72(w)) = (6=U)( = Y) 0 Wery, 0 WLy g L5, Pottme(u)

V((re0) = (@) = Y)) 0 W 0 W T )Pl (o

/QEQB(gS(l,u),l/\/g)

+ / o (u) = (6U)(-—¥)) o Wey, 0 WL V.
QEOB(gE(l,u),l/\/g)

Then, using the same argument with that for the proof of (60), we deduce that
[Pe(l7e(u) = (0U) (- = Y) o Wey, 0 Wiy )y lo,pore (w)

<u c 12 < ( cé )2

w(———— — .

T Aw(l—q)” T \(1—q)

Moreover, following the arguments proving (61), (62) and (65) in the proof of Propo-
sition 12, we deduce that

1(@-U)( = Y) ooy, 0 U5 oy — (6U)( = Yoy 0 Uiy, (V)] < OE?).
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Therefore, when ¢ is sufficiently small,

cd(1+q)

1P (L, 7= (u) = (6=U) (- = Yoy, 1y © U2y, (V)6 (1r (u)) < (4(1 ~0)

From now, we prove that

/ |VP.(1, 7. (w))|? + Po(l, 7o (u))? — 2F (P.(1, 7o (u)))dz <
Qa\B(gs(l’u)’l/\/g)

Note that, by Cauchy-Schwartz inequality,

/ VP, 7 ()2 + Po(l, 7 (u)) 2da
Qe\B(ge (L,u),1/V3)

<

/ V(e (- — Vo)ra(u) o Wy, 0 WTL e
Q\B(g< (1,u),1/V3)

+ / AV((1 = po(- — Y))re (w))2der
QE\B(gE(l)u)71/\/3)

o 2 = Vo)) o Wiy, 0 UL, )
QE\B(gE(l,u),l/\/g) »Yell,

+ / (1~ (- — Y))7e(w))?da.
Qe \B(ge (L,u),1/V3)

(c)”

7

)2. (68)

By the decaying property of 7. (u), there exist some constants ¢/, C’ > 0, independent

of €,§ such that

/Q V(1 = 0 = Vo)) + (1 — e(- — Vo)) (u))?da

- / V(1 — e — V)7 (@) + (1 — e(- — Vo) (u))?de
QN\B(Y:,r/3¢)

<C'"exp(—c'/e).

(70)

Since |Yz(I,u) — g-(I,u)] < Ry from Proposition 12, there exists ¢) € (0,d3) such

that for § € (0,04] and small € > 0,
Uy, 0 U2y o (Blg=(1,u), 1/V5)) D B(Yz, 1/2V5).

Thus, we see that for § € (0,)) and small £ > 0,

/ V(e = Vom(w) o Wey, 0 WIL )2
Q\B(g< (1,u),1/V3)

(pe(- = Yo)me(u) 0 Uy, 0 Wy,

g(l,u))zdx

o
QE\B(gE(l,u),l/\/S)

§w2/ V(e (- = Yo)Te(u)[* + (e (- = Ye)7e (w)) *da.
QA\B(Y:,1/2V5)
By decaying property of 7. (u),

/ V(e = Yo)m (W) + (pel- — Yo)7e(w)da
Q\B(Y:,1/2V3)

-/ V() + (7 (0) P + o).
Q\B(Y:,1/2V5)
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Since |Y; — Y| < 3Ry and ¢.U has the exponential decay property, it follows from
(66) that for small § > 0,

0
V. (w))? + 7o (u)?de < 9
/QE\B(YE,l/Q\/g) V7wl ) (400(1 —q)

Then, combining (69), (70) and (71), we see that for small §,¢ > 0,

)2 + 0(6%). (71)

/ VP17 () + Po(l, 72(u))?dc
Q\B(g:(L,u),1/V3)

<2w?( )2+ 0(6%) + ofe)

dw(1 - q)
Then, it follows from (39) that for small §,e > 0,
/ |V P.(, 7o (w)|? + Pe(l, 7o (w))? — 2F (P (1, 7= (u)))da
Q:\B(ge (1,u),1/V3)
<20 (1 + q)(e8/4w(1 = q))* + 0(6?) + o(e)
=1+ q)(c0)?/8(1 — q)® + 0(6%) + o(e).
We take a small 4 € (0,9}) such that
cd(1+q)

2
Tig) S

(1+0)(0)*/8(1 — 4)? + 0(8?) < (c0)*/7, (
Thus, for ¢ € (0,d4) and small € > 0,

9 9 1/3co\2

VP o)+ Poll, 7o(w)? = 2P (Po(l, 7o (w))de < 5 ()

QE\B(QE(Z:U)J/\/S)
Also, we see from (68) that

_ 1 /3co\2
[Pl 7e(w)) = (60 = Vet © Yot (V) lspimtan < 5 ()

This implies that P.(l,7.(u)) € ch5/5(2§0d) for § € (0,64), 1 € [0,1;] and small
e > 0.

Lastly, the claim of the invariance of G3(Z1°¢) by the operator P.(I,7.(-)) comes
from the fact that for 7.(u) ¢ Gg/4w(Z;0d), P3(1-(u)) = 0 and P.(l,7.(u)) = 7-(u).
This completes the proof. O

Proposition 14. There exists 65 € (0,04) such that for § € (0,05), the trans-
plantation flow satisfies the energy decreasing property: for u € Gg(Z;Od) with
Y. (u) € N3 and small ¢ > 0, the energy functional T-(P-(l,7.(u))) is nonincreas-
ing with respect to l € [0,1,]. Moreover, if u € Gg/m (Z19) with Y. (u) € NPI\N2,
there exists a constant pg > 0 independent of 6 € (0,05) such that for small € > 0,

FE(PE(ltaTE(u))) - FE(PE(()?TE(U))) < —poe.

Proof. Let X, = Yo(7o(u)), Xo(l,u) = ®(l, eYe (7o (), 7e(u)) /e and 0 < | < I+1' <
l¢. Since the Jacobian determinants of W, XE,\I/E_;E (1,u) T€ 1, it follows that
[ (el = Xy o W, 0 Wk 11 (0)Pls

= [ (el = Xm0 W, 0 0 (@)
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and
Pl 4+ 1,7 (w))) — To(Pell, ()
/v XN 7re(w) - VO de— [ V(( (=X )7e(w) - VU da
Qe
/ (1= el — XN (@) T dr — [ (1= el — Xo)yre () T
Q. Qe

- / F(Po(l + 1, 12(w))) — F(Po(l, 7o (w)))dr + » / VT2 T 2de
Qe
=TI-TII+TIII-TIV+TV+TVI,

where \Tlé = (<p€(~—X€)TE(u))O\IIE)XEo\I/;i(e(l’u). We denote we = (g (-—X:)7e(u))o

W, x.. Assume that p1(eX.)p3(7-(u)) > 0 and let h = p1(eX.)pS(7-(u))l'. We may
assume !’ is small so that

1
i X, X, ! — FeX X,
distgn (e X (I, u), e X (141, u)) < 100 and |E(eX.(l,u))—E(EX(+1,u)| < — 000"
(72)
Ifh=0,T(P.(I+1,7(u))) =T(P:(I, 7-(u))). Now, we assume that h > 0.

First, we estimate |T'III —TIV|/h.
|TIIT - TIV|

(= el = Xpmuios 0 0y = w0 Vo kN

< / (1= 9o (- — X)) (w)) A (2) As(2)da

=

where A () = (WX 40 (@) = U7k (@) and

1 -1
A (z) = |we 0 WC (14 (%) —we 0 W5 (7))

71 1
V2 X (@) = Y x, g ()]

From (iii) in Proposition 3, we can see that for small € > 0,

_ 4r
supp(we o \Ilsé(s(l,u)) C Q. N B(X.(I, u) 50 ) C Q. N B(X,, 55—:)' (73)
Recall that for Yy= (yl7yn) = ‘llg i(s(l u)( ) and g = (g/7gn> = m;;&(l-{-lﬂu) ($>7
1 — (X (lu))y 0
Uk g (@) = (BeXo(Lw) ™ : - :
Tn — (Xe(lau))n wa,XE(l,u) (y/)
and there is a similar identity for § = W_ ;E(Hl, ()

When z € supp(w; o \Il;ka a u)) Usupp(we o U4

S X (41, u)) it follows from (72), (73)
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and (ii) of Proposition 3 that

ly—yl= \‘I’EX (141, u)( ) — \De;( (, u)( z)|
<[ BEX (4 1,u) ™ = (BeXo(Lu) e — XU+, u)
+ X+ u) = Xe(Lw)] + 1Y x. 0wy (Y) = Ve xo 0 a)
<(EEX(+1,u) ! = (BleXo(lu) Mz = Xe(l+ 1, u)
+ [ XU+ 1) — Xo(Lw)| + Ve x. 0 (U) — Ve x40 (W)
+ Ve, x. 40,0 Y') = Ve x40, (T))]
<UEEX(+1,u) " = (BeXe(l,u) e — Xe(I+ 1, u)|
+ 2distoq, (X (I + 1, u), Xo(l,w)) + aly — 7l;

|
7l
|

(74)

thus

’Az(x) ‘ e 7 NEEX 4+, w) " = (B(eXc(,u)) !
h | 7e(l—a) h
2 distga, (X:(I+ 1, u), X (1,u))
l1-a h '
Since the frame E and the transplantation flow ® are smooth, we see from the no-
tation X, = Ye(7:(u)), Xc(l,u) = ®(1,eYe(7:(u)), 7 (v)) /e that for some constant
C >0,

(75)

\AQT(:”)\ < CJe. (76)

Since supp(l — (- — Xc)7e(u)) N B(Xe,7r/3e) = 0, using (76) and mean value
theorem for A; with the decay properties of Propositions 8, 9, we deduce that for
some ¢, D > 0, independent of small § > 0, > 0,

‘TIII—TIV’ < B

- exp(—clz — X¢|)dx = o(e). (77)

Q\B(X.,r/3¢)
We can estimate |71 — TII|/h in a similar way to |[TT1] —TIV|/h. We note that
|TT—TII|

o) - [V(we 0 W2 yy) = Vw0 7L )](@)de

< /Q V(1= ) ()] (Bi(@)Ba(a) + Bs(@)[Vwe o (W24l )da

where
Bi(z) = [Vwe (W7 X (141, u))D\IIE_X a, u)(‘r) Vw (V7 , X «a, u))D\IIE_§( « u)( z)|
1 -1 — )
|‘IIE,X5(l+l’,u) (z) - \II€7XE(l,u)( z)|
By(z) = | ¥, X (I+0u) \I/E,Xg(l,u) and Bs(z) = D\IJE X (141 u) D‘IIS X (Lu)

We see from the mean value theorem and decay property of Propositions 8, 9 that
By is uniformly bounded on €. \ B(X.,r/3¢) for small € > 0 and § > 0, by the
same arguments with the estimate for |TIII — TIV|/h, we see that

TI -TII
7| - | = o(e).
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We estimate |TV|/h. We denote also w. = (¢(- — X:)7e(u)) o U, x.. Since we
have det DV, x_¢,.,) = 1 for [ € [0,1;], we see that

V|

:‘ /Q F((1 = oo+ = Xo))7e(u) + (e (- = Xo)7e(u)) 0 We x, 0 \I’;XE(H-I’ u))d
a /Q F((1 = e(- = Xe))Te(u) + (pe (- — Xe)Te(u)) 0 Ve x. © \I’ 1 X (1, u))dm‘
z‘ /Q F((1=pe(- = X)) (u) Fwe 0 U5 ) = Flwe 0o W75 (1)

_/Q F((1 = pe(- = X))7e(u) +we 0 W ) = Flwe o Wy u))dx‘

] w0

where b(t) = F((1 — (- — X2))7(u) + a(t)) — F(a(t)) with

a(t):tweo\Ilgﬁ((lH, )Jr(l tyw. o U~ i((lu)

Then, by the mean value theorem, there exist tg,t; € [0, 1] such that

V1 =] | (0 el = X)) +(t0) = Stato)e o)
= | [ #0000 = 02 = X)mw) +alto))(1 = el = X)) (ta)da].

Since
a(t) = we o ‘I'E_X (141 u) — We© ‘I’;X (1)
and (1 — ¢.(- — X.)) vanishes on B(Xg,r/?)g), we see from the exponential decay

property of 7.(u) that for some C > 0, independent of small & > 0,

|TV]| SC" / (1= (- — X)) e (u) (we 0 \If6 X (1) — We © \IIE X, u))d:r
QN\B(Xc,r/3¢)
<C|TIII - TIV|.
Then, by the estimate (77), we see that ‘Th—vl = o(g).

Finally, we estimate TV I/h. For a change of variable y = \IJE_ X.(, u)( x), we see
that

DU, (2) = (DY, x_ g (y) !

e, X (Lu)
1 0 ... 0
0 1 0 0
_ : | (BeXe(w)Th
0 0 1 0
—Diex.quw(ey) - - —Dn_1tbex quw(ey’) 1

Thus we see that
V((pere(w) 0 Wex, 0 U % ) (@)
~(Vur(y) = Daw-(y) (Drvoex. @ (9): -+ Do 1tbex. 1. (e),0) )
x (B(eX(l,u))) "
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Here, the right hand side is the multiplication of a row vector and a n X n matrix.
Then, it follows that

TVI :/ ans Z D; we ZwsX (Lw) — iwsXs(l—Q—l/,u))(Eyl)dy
R?NB(0,r/¢)

n—1

+ / D) S (1Dt e = 1Ditoex. 1 2) 9.
R?NB(0,r/e)

i=1

By (ii),(iv) in Proposition 3, there exists M > 0 such that for small € > 0,

TVI 1/
— < Dn’LU D ;W zw u) ﬂP - ™ Ey/ dy
h h R NB(0,r/e) ‘ Z e( eXe(lu) X, (14+1,0)) (€Y)

+M52/ |an€(y)|2|(y1a 7yn71)‘2dy'
R?NB(0,r/e)

Since 7.(u) € GJ/M(ZlOd) C Nsjaw(1—gq)(Z2), ||7e(u) — (0U)(- = 2)|l a0y <
§/4w(1 — q) for some z with |z — X.| < 3Ry and U € S. Then, for sufficiently small
e >0,

[pe (- = Xe)Te(u) — (U (- — 2) 0. <6,
[(pe (- = Xe)7e(u) — (@U)(- = 2)) 0 Ve x. | a1y nB(0,r/6)) <O
Moreover, by Proposition 4,
1(6-U)(- = 2) 0 We x, = (9U)(- = Uk, (Dl @y nporsey < O(E?).

Therefore, for sufficiently small ¢ > 0,
[we = (¢U) (- = ¥ . (D)l r n(o,r/e)) < 20. (78)

Let w. = (¢.U)(- — \I/E%(E (2)). By (ii) in Proposition 3, the exponential decay
properties of we,w., and (78), we see that for some C > 0, independent of small
e>0,0>0,

/ — We Z Die(y)+ (Ditbex_(1,u) — iwsXE(l+l’,u))(5y/)dy
R?NB(0 r/s)
1
+/ Dyw, Z D;( )E( iVex. (u) — Ditvex. v ) (€y)dy
R™ NB(0,r/¢)
<Ced.

This implies that

.
= D,w.( D;w Dithex.(1,u) — Ditvex. v ,w))(€Y')dy
h R™ NB(0,r/¢) : Z el el X

y (79)
<— D Ditpex. (1) — Ditvex. (14v,u)) (€Y )dy
h R?NB(0 7"/6) Z ol et sy

+ Ceé.
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Since supp(iw.) C B(0,2¢~1/3) for small £ > 0, we see from (iv) in Proposition 3
and the radial symmetry property of ¢ .U that

n—1
1
D, w D;w.(y)—(D; s / ey’ )d
\/R”nB(o 2e-1/3) € ; € )h( 'l/)aX (lu) — q/JEXE(Z—H ,u))( Y ) Y
=/ Dy, Z Diw:(y) 7 (Dithe x. (1,u) = Dite, x.(141,u)) (Y)Y
R7NB(0,26-1/3)

1, . )
T D ) Dide(y) 5 (AL x, (1,) — A sw) Y dy + ole)
/R:;mB(o,ze—l/s) c ; e\ e Xe (Lu) &, X (1410 1)
T / Dn(¢eU) nz_l Di(%U)l(Ai Xl — AL X (1)) - Y dy + 0(e)
R7NB(0,2e-1/3) h X, X, ;

=1

n—1

1 7 7
T h(n—1) > (“axe(l,u) - as,xs(lw,u)) /R VU @) Pynly' [/ 1y dy + o(e),
i=1 e

where a;X is the i-th component of A% y for X € 99Q.. Since -1 ZZ 1 ae x is the
mean curvature of Q. at X € 99Q,, we see that

n—1
1 i i H(EX (lu)) — HEeX (I + U, u))
h(n—l)z(fxﬂu)_“ <l+M>>: h ’

i=1

where H(x) is the mean curvature of 9Q at x € 9Q. We note that for any radially
symmetric function G,

1 |Sn 2|
CW)yndy = — =T G(x)|x|dx
R7 | JRn
and
2 ‘Sn 2|
G(y)(yn)2dy = / G(2)|z|*dz.
Using these identities, we get
1 ‘Sn72|
VU n 2d VU 2|y|dy.
R e et MO
Therefore,
n—1 1
/ Dy, Z D;w. (y)E(DiZ/JsXE(z,u) — Dithex. (141,u)) (€Y' )dy
R7NB(0,2e—1/3) P
H(eX (141 u) = H(eXe(lu) 1 |S"72 2
U d, .
Y PR RHIV *lyldy + o(e)
Then, (79) implies that
n—1
1 /
E/ ans(y) Z Diws(y)(Diwng(l,u) - Di¢aX5(l+l',u))(5y )dy
R?NB(0,r/€) i1
H(EeX(1+1,u) — H(EeX(l,u)) 1 [S"72 5
< d ) .
<e h D115 Jan [VU|*|lyldy + Ced + o)
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Since

H(EeX(14+1,u)) — H(EeX(Lu))

_H(®(px (eXo)p3 (1)l + hyeX.)) — H(®(pr(eXe)ps (e )l eXe)
h )
X, = eX(1(u)) € N\ N??if h # 0 and |®(1,eX.) — eX.| < d/10 for | € [0,1],
we see from Proposition 1 that
H(EXE(Z + l/7 U)) — H(EXE(la U)) <

—a.
Y <
Thus, taking a small 05 € (0,d4), we see that for § € (0,05),
TVI a  |Sn2 S
— < e U dy if h > 0.
S Tt 1) 57 g |V WY iR >

Then, combining the estimates for T1, TI1, TIII, TIV, TV and TV I, we see that for
0 € (0,65) and small € > 0, the energy nonincreasing property holds. Especially, if
u € Gé/Gw(Zlod) with Te(u) € NPT\ N24 we have h = I'. Thus, if u € GJ/GM(Zlod)

with Y. (u) € N2\ N24, for sufficiently small ¢ > 0,
(P (lt’Te(U))) —Te(Pe(0, 72(u))) < —epo,

where pg = infyes 4(n+1) IS" 1‘ f]R" |[VU|?|y|dy. This completes the proof. O

9. Proof of the main theorem. In this section, we will prove that there exist
small §, v > 0 such that for small € > 0, I'. has a critical point in
G(e,v,0) = (Db \ Tl=7=") N G§(21%%).
Recall b, is the value coming from the upper energy estimate (51) given by
n—2
b= 5TW) + et
We fix § € (0 55) so that ¢ = ¢(§) < 1/1000. Then, by Proposition 7,
G3s/8(22°7) © Nis12(22°7) € Nsja(21°) € G55(21°1) € N5(22°). (80)

In the definition of the initial surface, we can see that A.(1,z) € G5/40w(210d) for
small € > 0. By Proposition 10, there exist a constant v > 0 such that for small
e >0,

D.(Ac(t, 2)) < b —ev if AL(t,2) ¢ G5/4Ow(210d) or To(Ac(t, 2)) ¢ N2 (81)

We will prove by contradiction. We assume that for some small ¢ > 0, I'. has
no critical points in G(g, v, 9).

Now, we will define a gradient flow. We choose a smooth function x7 on R such
that x¥(1) = 1if |l —b.| <ev/2 and x¥(I) = 0if |l — b.| > ev. By (80), we can take
a smooth Lipschitz function x2 on H'(Q.) such that ng( )=1forue G36/8(Zlod)
and k%(u) = 0 for u ¢ G45/5 (2194). We define the gradient flow by the following
ODE:

A VU Plyldy + ofe).

dne (s, w) v .

— = ()R ()L /L) 12 7e (0, w) = . (82)
This ODE has a unique solution 1. = n.(s,u) for s € [0,00). By the definition of
cut-off functions x” and k2, we can see that the set (% \ I'==¢¥) N G§(Z1%9) is
invariant by the flow 7..
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Proposition 15. Let u € G$(Z21°9) and Y.(u) € N??. Suppose that for 0 <
s1(g) < sa2(e) and some constant ¢ > 0, independent of € > 0,

Te(ne(s1,u)) = Ye(ne(s2,u))| = c/e.
Then
gi_r}(l) [sa(e) — s1(g)| = oo.

Proof. We consider the function Y. (n:(s,u)),s € [s1,s2]. We take a partition

s1 = 80 < st < oo < sFT < sk = 55 of [s1,89] such that |Y.(n.(s%,u)) —

Y.(n(s"1,u))| > c¢/ke > 8Ry for i = 1,--- ,k. From Proposition 5, for each
i=0,---,k, there exist z; € N1 and W; € S(z;) satisfying

e (s’ u) = Will <6, [Te(ne(s',u)) — zi| < 3Ro.
By (34), (35) and (36), it holds that for small € > 0,
[ne (s, u) — ne(s', w2
>[|Wi = Wigalle = lIne(s’,u) — Wille — (s u) — Wiga ||

>£/2 — 26 > 106 — 26 = 85.
Note that ||On:(s,u)/ds||z < 1. Then it is standard to see that for some A > 0,

independent of i = 1,--- ,k and small € > 0, |s' — s'~!| > A. This implies that for
any k > 1, |s1 — s3] > kA if € > 0 is sufficiently small. This proves the claim. O

Since ¢ = ¢(d) < 1/1000, it holds that for any a,b € (0, ),
Go(Z2°7) C Nioooasooo(Z2°%),  Nayys(Z2°7) € Gp(Z21%9). (83)

Proposition 16. Suppose that u. € G3(Z1°4) N1 and for some | € [0,5/120w],
ne(l,ue) € Gé/Gw(ZIOd) \ G6/40w(210d) and Ye(n-(I,u:)) € N3 Then,

g

)
Fe(ns(maue)) < b. —ve/2

for sufficiently small € > 0.
Proof. We note from (83) that
G360 (Z2°7) C Nosjaaw(Z2°%) C Nijaw(Z2°%) C G575, (22°%),

and that

G3/400(Z2°%) D Nsjo0ws(Z2°7) D Noysow(Z2°7) D G 1200, (22%9).
We see that

§ /4w — 56 /24w > §/240w, §/60w — 6/80w > §/240w.

Thus, if | € [6/240w, 0/120w], we see from the fact ||dn./ds||c <1 that

ne(s,ue) € G36/8w(210d) \ G5/120w(Zmd> for s €[l —6/240w,1],
and from Proposition 15 that if € > 0 is small,

Y. (n-(s,u:)) € N2 for s €[l —6/240w,1].

I Te(ne(s,ue)) > be —ev/2 for any s € [l — 0/240w, 1], then from the definition of
cut-off functions dn./dt = —TL(n:)/||ITL(ne)||* for small e > 0. Since the flow 7.
decreases the energy I'., we see that for small € > 0,

Le(e(l,u)) = be < Te(me(l,ue)) — Te(me(l — 6/240w, ue))
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l l
dn-(s,u N
e T N e A L1 2
l l

—6/240w S —6/240w

4
<—-— < —ev.
< 240wu(36/8w,5/120w) < —ev

This contradicts that I'c (. (s, ucs)) > b —ev/2 for any s € [l — 6/240w, {]; thus
T (1 (8/120w,u. ) < be — ev/2

If | € [0,0/240w], by a similar argument with s € [I,I 4+ §/240w], we can show
that for small € > 0, I'.(9-(6/120w, u.)) < b. —ev/2. This completes the proof. O

9.1. Iteration through a gradient flow and a transplantation flow. For

)
ly = 1355, We define an operator

I(u) = 1. 0 P(ly,-) o e o m(lg, u),

where [; € (0,1) is chosen so that (54) holds. Let I* be the i-fold composition of I.
Recall the notation

G(e,v,0) = (T \ Tl=7=") N G§(21%%).

Since we assume that there exist no solutions in G(g,v,d) for small € > 0, there
exists k() > 0 such that
ITL(u)||% > k() for any u € G(e,v, ).
We take a positive integer j. satisfying
ev

e
TR

Proposition 17. If there exists no critical points of Tz in G(e,v,d), then
T (I’ (Ac(t, 2))) < be — emin{v/2, po/2} for any t € [0,T),z € L,
where Lo is the constant in Proposition 14.

Proof. Note that I'. is nonincreasing by 7., 7., P-. By (81), it suffices to consider
only when A.(t,z2) € G§/40w and Y. (A.(t,z)) € N2 We recall the following
properties.

(i) (Sections 4 and 5)

7. (G25(210%) € G%5(21%%) for each ¢ € (0,1).

Yo (7e(u)) = Yo(u) for u € GS(Z10D).
(ii) (Proposition 12) For u € G§(Z1°%),1 € [0,1;],

ITo(P.(l,u) — ®(I,eYc(u),u)/e| < Ry.
(iii) (Proposition 15) For u € G3(Z1%) with T.(u) € N4,

[To(me(lg,u)) — To(u)| < o(l)/e as e — 0.
(iv) (Proposition 13) For ¢ € (0,1] and u € Gg5/4w(2510d) with Y. (u) € N34,
then P.(l,7-(u)) € G35/5(21°) when I € [0,1,] and & > 0 is small. Thus,
Po(l,7:(Ac(t, 2))) = P(l, Ac(t, 2)) € G35/50(2L0%) for all I € [0, 1],
(v) (Definition of the gradient flow (82))
{n:(l,u) [ 1€ [0,1]} € G5(22°) for u € G§(21).
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These imply that for small € > 0,
{Te(n-(l,w) | 1€ [0,15]} € NEFFMO 5 T (u) € NEY e € [1,9],

and that when € > 0 is small enough, for ¢ =0,1,--- ,j. — 1,
|T5(776(lg,li(/~lg(t, z)))) — TS(IH_l(AE(ta 2)))| < Ry +d/10e, (84)
T (ne(lg, I (Ac(t, 2)))) = Te(I'(Ac(t, 2)))| < d/10e. (85)

Now, we see that when A.(t,z) € G5/40w and Y. (A.(t,2)) € N29, at least one of

the following three cases occurs:
(Case A) foralli=0,1,---,j. — 1,1 €[0,1,]

0: (1, T'(As(t,2)) € G a0, (Z22°7) N {u | Te(u) € N2

(Case B) for some i =0,1,---,j. — 1,

0e(lg, I'(A:(t,2))) € G340 (Z2°7) N {u | Te(u) € NP0\ N0,
(Case C) for some i € {0,1,---,j. — 1} and some [ € [0,1],

1oL Tt 2))) € (G, (229 \ G0 (210) 11 | Te(u) € N2,

If (Case C) does not occur,

0e (1, T'(As(,2)) € (G560 (Z2°0) \ 63 a0 (22°0) N {u | Te(u) € NEY
forany i =0,1,---,jc—1land l € [0,1,). Tt Yo(n-(I, [*(A(t, 2)))) ¢ N;’d for some i <
Je, 1 € [0,1], then there exists 0 < ig < j. — 1 such that Y.(n.(ly, I (A:(t, 2)))) €
NZEZAM0N AP2AHA/10 10 (84) and (85). We may assume Yo (n:(ly, I'(AL(t, 2)))) €
N2 g1 any i < ig. Then Ye(n-(l, I'(Ac(t, 2)))) € N5 for any i < 4o and
1 €[0,1,]. By the property (iv), we see that for u € G§/4Ow(2§0d) with T.(u) € N84,

Po(l,u) C G550 (22°7) € G5 6, (220Y), 1€ [0,14].

Since G%(Z220%), ¢ € (0,1] is invariant by the tail-minimizing operator 7., this
implies that, for i <ig and [ € [0,1,],

ne(l, I'(A(t, 2))) € G5/40w(zmd)
Therefore, it follows that (Case B) holds. When Y. (1. (I, I*(Ac(t, 2)))) € N5 for
any i < je,l € [0,14], we see that, for all i < j.,l € [0,1,],

ne(L,I'(A(t,2))) € G5/40w(210d)

and (Case A) holds.
Now, if (Case C) occurs, by Proposition 16, for small € > 0,

Do (17 (Ac(t,2))) < Te(ne(ly, I'(Ac(t, 2)))) < be —ev/2.
If (Case B) occurs, by Proposition 14, for small € > 0,
Lo (Pe(ly, o (ly, T'(Ac(t, 2))))) < be +0(e) — epo < be — ep1p/2-

If (Case A) occurs, we claim that

Lo (e (1, I'(Ae(t, 2)))) < be — ev/2
for some i € {1,-- — 1} and some [ € [0,1,]. If the claim does not hold,
Lo (e (1, I'(Ac(t, 2)))) = be — ev/2
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for any i € {1,--- ,j. — 1} and I € [0,1,]. In this case, it follows that
FE(IjE (As(tv z))) — FE(AE(ta z))

= [Fs(Ij(As(tvz))) 7r6(1j71(/16(taz)))]
=1 (86)

5(t7 Z)))) - Fs(‘[j_l(;le(tﬂ Z)))]

IN
=
m
—~
=
m
=
~
L
—
b

Since for any j =1,---,j. — 1l and [ € [0,{],
FE(na(l7Ij_1(A6(t7z)))) > be —ev/2, Te(ns(lvjj_l(As(t7z)))) € N§d7

from the definition of the gradient flow 7., we see that for any j =1,--- ,j. — 1 and
l € [Oa lg],

el DA 1,571 (At )0 e P (At )

This implies that for any j =1,---,j. — 1,
Lol YA (t, 2)))) = T (T (Ac(t, 2))) < —1gh(e).
Therefore we get from (86) that
Do (1% (AL(t, 2))) = T=(A(t, 2)) < —jelgh(e) < —ev.
Thus, if (Case A) occurs, for small € > 0,
Lo (I (Ac(t,2))) < be — ev/2.

Since T (I(u)) < Te(u) for any u € G3(21°?), we see from (81) that for any
t€[0,T] and z € L,

Do (¢ (A.(t, 2))) < be — emin{v/2, po/2}.

This completes the proof. O

Now, we define the deformed initial surface
B.(t,z) = ’*(A.(t,2)), t€[0,T], z€ L. (87)

Since T'.(A.(t,2)) < b. —ev for (t,2) € O([To, T) x L), the transplantation operator
P. fixes any element u with Y (u) ¢ N3 and 7.(A.(t,2)) = A.(t, 2), we see that

B.(t,z) = A.(t,2) ¢ G5(21°9) for (t,z) € d([To,T) x L). (88)

Moreover, since 7, 7. and P: are continuous map from G$(Z21%) to G4(21°9) and
T.(AL(t, 2)) = A.(t, ), we know that B, : [Ty, T] x L — H'(Q.) is continuous and

B.(t,z) = A(t, 2) if Be(t,2) ¢ GS(Z104). (89)
From Proposition 17, if ¢ is sufficiently small, for all t € [0,7] and z € L
I'o(B:(t,2)) < b. —emin{v/2, uo/2}. (90)
We note from (49), (50) and (88) that for small € > 0,
Y. (B:(t,2)) € O for (t,2) € [Ty, T] X L,
Y.(B:(t, z)) = z/e for (¢,z) in a neighborhood of d([Ty, T] x L).
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9.2. Lower bound. In this section, we will prove the following lower estimate.

Proposition 18. There exists U e S such that for small ¢,
m |Snf2‘

1. .
>
max Fs(Bs(tv Z)) F(U) + En +1 |Sn—1‘ R

z€L,te[0,T) - 5

VU @)Plyldy + ofe).

Proof. By (H1), we have a continuous map
Mo (eY.) 0 B. : [Ty, T] x L — L.

It is well known that any C' manifold has a C° differentiable structure which is
C! diffeomorphic to the original differentiable structure. Thus, we may consider L
as a C° manifold. Then, we can approximate Il o (¢Y.) o B, : [Ty,T] x L — L
by a C°* map EL : [Ty, T] x L — L satisfying Z.(¢,2) = z in a neighborhood of
O([To, T)x L) and [|TTo (<) 0 Be — EL|| oo (1, 77x 1) < 1/1. By Sard’s theorem, there
exists a regular value wl € L of =L near 2o with |29 — w!| < 1/I. Then (ZL)~1(w})
contains a 1-dimensional manifold connecting (Tp,w!) and (T,w!) in [T, T] x L.

We find a diffeomorphism
pe = (th,20) £ 0,1] = (D) (wi) € [To, T] x L
with pL(0) = (To,wl) and pL(1) = (T,w!). Then, we see that

€

llim Mo (eY.) o B-(pL(s)) = 2 uniformly for s € [0, 1].
—00

Then, defining m; = infejo 1] H((eY2)o B (pL(s))), we deduce that lim inf;_, o my >
m.

Now we consider ¢.(x — Yo (Bc(t,2)))B:(t,z) for t € [Ty, T],z € L, where ¢,
is a smooth function satisfying (7). Then, from the decaying property of the tail-
minimizing operator, when ¢ > 0 is small,

De(Be(t,2)) = Te(de(x — Te(Be(t,2))) Be(t, 2)) + o(e),

uniformly for t € [Ty, T],z € L. We define Bl(s) = B.(pL(s)),s € [0,1]. By Re-
mark 2, we have maps ¢5,T5(Bg(s)) and \I’e,TE(Bg(s)) satisfying properties (i)-(iv)
in Proposition 3 except the properties involving the derivatives with respect to
X = T.(B.(s)). Then, we define

wh(s) () = (9c(- = Te(BL))BYUS)) 0 W,y 51y (). v € RY,

Wé(s)(ylv 7yﬂ) = wé(s)(ylﬂ o Yn—1, |yn|)7 Yy= (yla e 7yn—17yn) € R"™.
Then w'(s), WL(s) are continuous in [0, 1]. Following the estimate for the term TV I
in the proof of Proposition 14, we can get a lower bound for max,c, 1) I'c(BL(s)).

After a change of variable y = \I/;;E(Bé(s))(x), we can see that

1 , 1

TUBL ) = [ VWP + We)E =5 [ POVI(s)

n—1
= [ Dunwk(6)5) 3 Dyl (NN Dite, 1) (€815 e9n1)y
+ =1
n—1

+ 5 /]R" |Dynwi(s)(y)|2 Z |(Di¢sTs(Bé(s)))(Eyla ceey Eyn*1)|2dy + 0(5)'
+ i=1
(91)
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Note that |[DV_y_ i)l is uniformly bounded in L>(R% N B(0,r/e)); thus for
some C > 0, independent of [, s and small ¢ > 0,

IVl (s)(y)| < CIV(¢e(- — Ye(BL(s)))BL(s)) o U, Biisyl-

Since B.(t,z) € G3(Z1%9) or B.(t,z) = A.(t,z), there exists D > 0, independent of
I, s and small € > 0, such that || B.(t, 2)||. < D for any (¢, z) € [To, T] x L. Note from
Proposition 3 that [Dit.y_ g1 () (€y')| < O(ely’[). Then, we see from the uniform

exponential decay property of w!(s) for I > 1 and s € [0, 1] that

’ ZD w 11/}5’1” (BL(s)) (5y1, < EYn— l)dy 0(5)7 (92)
]R'L

/R DO S Db e s v Py = o (99
+ i=1
Since
1 1 1
max (1 [ IWOWPHIOWE-5 [ FOV W) = 510), Ues,

by the upper estimate (90), we see that for each [ > 0,

tim mae (5 [ [VWHS@E + WHOWE = [ FOVs))ds) = TO)

e—05€[0,1] \2

Since {W!(s) | s € [0,1], positive integer I, small ¢ > 0} is bounded, we see that
there exist s. € [0,1], ¢ € OR" and U' € S such that {g;}, is bounded, T(W/(sL)) =
maxeio.) T(WL(3)), lime o T(W(sL)) = T(U") and lim. o W (L) — U (- = q0)| =
0. We see from (47) that lim. o t!(sl) = 1.

Now we see that

srél[%)i]l—‘ (B (s)) >T. (Bl( )

From (91), we see that

PL(BL(sL) — 500

Z - ]R" ZDyzw ( 1/(/)51‘ (Bl(sl)))(€y17~ - EYn— l)dy (94)
T
1 n—1
+ 5 /R" |Dynwé(sé)(y)|2 Z |(Di¢5‘ra(éé(sl€)))(€y1, ...,€yn_1)|2dy +O(E).
+ 1=1

Then, by combining the argument proving (92) and the triangle inequality, we
can see that

Z Dy, wi(s (Ditp.y, (31(51)))(59 )

‘ R’n
— DUy — q ZDU — 0)(Ditboy. (51 0) (€Y )| = o(e). (95)

Moreover, since supp(¢.U) C B(0,2e7/3), we see from (iv) in Proposition 3 and
the exponential decay property of U! that
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n—1

| / DUy — ) 3 DU (y = a0)(Dithr 1 ) (E0)
e i=1

n—1

- DnUl(y —q) Z DiUl(y - QZ)AQTE(E’é(le)) ) (Ey,)dy| =o(e). (96)
=1

From radially symmetric property of U,

n—1
DnUl(y - a) Z DiUl(y - QI)AZTE(Bé(le)) “(ey)dy
=1

n
RZ

n—1
= DnUl(y) Z DiUl(y)AiTE(gza(sle)) : (E?/I)dy
i=1

R}
—eHETBLL) [ VU WPl )Py (©7)
1
HEX(BUSIN 72 [ G
my |Sn72‘

1 2
dy.
2T 5T RHIVU ()" lyldy

Now we may assume that U! — UesS up to a subsequence as [ — oco. Then we see
from (95), (96) and (97) that

1 n—2
max [ (B.(t,2)) > §F(U) e i

T UPlyld
2€L,t€]0,T) n+ 1571 Jon IVU"lyldy + o(e) (98)

This completes the proof. O

9.3. Concentration points of one peak solutions. The following result was
proved in [37] when the nondegeneracy (f5) holds. Here, using the transplantation
flow in section 8, we can prove the following.

Proposition 19. Suppose that there exists a solution v. of (3) such that for some
ze € 9Q and C,c > 0, v.(z) < Cexp(—clr — z/¢]) and we(z) = v.(2V._(ex))
converges uniformly, up to a subsequence, to U € S for x € B(0,r/e) N R} as
€ = 0. Then, lim._,o |[VH(z.)| = 0.

Proof. Suppose that limsup,_,, |[VH(z.)| > 0. Taking a subsequence if it is neces-
sary, we may assume that lim._,gz. = 29 and [VH(zp)| > 0. Then, by Remark 1,
there exist constants 9,7 > 0 such that the properties (i)-(iv) of Proposition 3 with
maps Y- x (y'), ¥e x (y) defined for X € B(zo/e,70/e) NN, y' € B"1(0,7/¢) and
y € B"(0,7/¢)NR’}. Then, by the same arguments, Proposition 4 with B(z. /e, ro/¢)
replacing NV19¢\ N4 holds. As in (4), there exists a local solution of

4,

dt
Then, for the function ¢, € C§°(R™, [0,1]) satisfying (55), as in (56), we define

Ps(l)(l') = (906('726/5)06) o \Ils,zg/e o \Ij;.li.s(l)/g(x)jL (]‘7§0€($7’Z8/6)v8(x)' (100)

We claim that lim;_,o(Te(P:(1)) — Tc(ve))/l < 0 for sufficiently small € > 0. This is
a contradiction since v, is a critical point of I'.. To prove the claim, we note that

(t) = =VH(®.(t)), @:(0)= z. (99)
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since the Jacobian determinants of ¥, . /. o \Il;lb W)/e (z) are 1,

[ Gt e o 2L (0

- / (e — 22 /e)ve (2))?da,
and that

L. (Pe(1)) — T (ve) :/Q V(1= pe(- — ze/))ve) - V@idw
/Q V(1 = 9 — 2e/2))ve) - Vel — 22 /e)ve)de
—1
+ / (1= 9e(- — 2e/2))ve) T-de
/Q (1= ec — 2/E))ve) (el — 22 /e)ve)da

— /Q F(P.(l)) = F(v.)dx

1 —
by [ VTR = V(o = 2/

= SI-SIT+SIIT—-SIV+SV+SVI,

where @lg = (@e(- = ze/€)ve) 0 W, _jc O \Il;}%(l)/e. From the elliptic estimate of
Proposition 9, we see that for some C’, ¢/ > 0, |Vv.(z)|,|D?v.(z)| < C" exp(—c|z —
ze/€|). Then, by the same arguments with the proof of Proposition 14, we deduce
that for small e, > 0,

|ST — SII|/l =o(g),|SIII — SIV|/l =o0(e),|SV|/l = o(e). (101)
Furthermore, following the almost same arguments with the estimate of [TV I/h| in
the proof of Proposition 14, we deduce that

H(® (1) - H(z) 1 |S"7? 2
SVIfi<e z n+1\5"*1|(/Rn IVUPlgldy +0(1)) +ofc),

where o(1) — 0 as [ — 0. This implies that for small € > 0,
[VH (20)[” |S"~2|

2(n+1) 5" Je
Combining (101) and (102), we see that lim;_,o(Tc(P-(I) — T'c(v:))/l < 0 for small

e > 0. Since P is a smooth function from a neighborhood of 0 in R to H* (), this
contradicts the fact I'(v:) = 0. This completes the proof. O

lim SVIJl < —¢ VU ?|y|dy. (102)
— 0

9.4. Completion of the proof of Theorem 1.1. Since in the upper estimate
(52), we take U € S satistying (46)

/ |VU|2|y|dy _ minf]es f]Rn |VU‘:|2|y|dya lf m Z 07
R® maxgcg fon VU lyldy, if m <0,

the lower estimate (98) contradicts to (90) and (52). Therefore for each ¢ € (0, s),
there exists a critical point of T'c in G(e,v,d) if ¢ > 0 is sufficiently small. Let
ve € G(g,v,0) be a solution of (3) with Ye(ve) = X.. Then uc(z) = ve(x/e) is a
solution of (1). Since lim._ob. = 3T(U), following the classical arguments in [34],
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we deduce that v.(z) < Cexp(—c|z—X,|) for C, ¢ independent of ¢, and that as ¢ —
0, veoW, x_ converges uniformly, up to a subsequence, to U(-—@Q) on B(0,r/¢) "R’
for some @ € ORY and U € S. By applying the proof of Theorem 2.1 in [34], we
can prove that, for small € > 0, u. has a unique maximum point z. with z. € 9.
Then, we deduce that sup, |z:/¢ — X.| < oo and w.(x) = v. o ¥, . /. converges
uniformly, up to a subsequence, to U on B(0,r/¢) R’} as e — 0. Since U is radially
symmetric, we see that u.(¥,_(ez)) also converges uniformly, up to a subsequence,
to U on B(0,r/e) "R’ as ¢ — 0. The property limsup,_, dist(z-,/N') = 0 comes
from Proposition 19. Since for ¢ > 0, we take a neighborhood N/ C M9 of M, this
implies that limsup,_, dist(z., M) = 0.
This completes the proof of the main theorem, Theorem 1.1.
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