
Lower Bounds for Local Monotonicity
Reconstruction from Transitive-Closure

Spanners

Arnab Bhattacharyya1?, Elena Grigorescu1?, Madhav Jha2??, Kyomin Jung3,
Sofya Raskhodnikova2??, and David P. Woodruff4

1 Massachusetts Institute of Technology, USA. {abhatt,elena g}@mit.edu.
2 Pennsylvania State University, USA. {mxj201,sofya}@cse.psu.edu.

3 Korea Advanced Institute of Science and Technology, Korea. kyomin@kaist.edu.
4 IBM Almaden Research Center, USA. dpwoodru@us.ibm.com.

Abstract. Given a directed acyclic graph (DAG) Gn = (Vn, E), a func-
tion on Gn is given by f : Vn → R. Such a function is monotone if
f(x) ≤ f(y) for all (x, y) ∈ E. A local monotonicity reconstructor for
Gn, introduced by Saks and Seshadhri (SICOMP 2010), is a randomized
algorithm that, given access to an oracle for an almost monotone function
f : Vn → R on Gn, can quickly evaluate a related function g : Vn → R
which is guaranteed to be monotone. Furthermore, the reconstructor can
be implemented in a distributed manner.

Given a directed graph G = (V, E) and an integer k ≥ 1, a k-transitive-
closure-spanner (k-TC-spanner) of G is a directed graph H = (V, EH)
that has (1) the same transitive-closure as G and (2) diameter at most k.
Transitive-closure spanners are a common abstraction for applications in
access control, property testing and data structures.

In this paper, we show a connection between 2-TC-spanners of Gn and
local monotonicity reconstructors for Gn. We show that an efficient local
monotonicity reconstructor for Gn implies a sparse 2-TC-spanner of Gn,
providing a new technique for proving lower bounds for local monotonic-
ity reconstructors. We present tight upper and lower bounds on the size
of the sparsest 2-TC-spanners of the directed hypercube and hypergrid,
DAGs which are very-well studied in this area. These bounds imply lower
bounds for local monotonicity reconstructors for the hypergrid (hyper-
cube) that nearly match the known upper bounds.

Keywords: Property Testing, Property Reconstruction, Monotone Func-
tions, Spanners, Hypercube, Hypergrid

? A.B. is supported by a DOE Computational Science Graduate Fellowship and NSF
Awards 0514771, 0728645, 0732334. E.G. is supported by NSF award CCR-0829672.

?? Supported by NSF/CCF award 0729171. S.R. is also supported by NSF/CCF CA-
REER award 0845701.



2 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

1 Introduction

Graph spanners were introduced in the context of distributed computing [1],
and since then have found numerous applications, such as efficient routing [2–6],
simulating synchronized protocols in unsynchronized networks [7], parallel and
distributed algorithms for approximating shortest paths [8–10], and algorithms
for distance oracles [11, 12]. Several variants on graph spanners have been de-
fined. In this work, we focus on transitive-closure spanners that were introduced
in [13] as a common abstraction for applications in access control, property test-
ing and data structures.

Definition 1.1 (TC-spanner). Given a directed graph G = (V,E) and an
integer k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) of G is a
directed graph H = (V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) <∞, then dH(u, v) ≤ k.

Thus, a k-transitive-closure-spanner (or k-TC-spanner) is a graph with small
diameter that preserves the connectivity of the original graph. In the applications
above, the goal is to find the sparsest k-TC-spanner for a given k and G. The
number of edges in the sparsest k-TC-spanner of G is denoted by Sk(G).

Our Contributions. The contributions of this work fall into two categories: (1)
We show that a local monotonicity reconstructor, as defined by Saks and Se-
shadhri [14], for a directed acyclic graph Gn implies a sparse 2-TC-spanner of
Gn, providing a new technique for proving lower bounds for local monotonicity
reconstructors. (2) We present tight upper and lower bounds on the size of the
sparsest 2-TC-spanners of the directed hypercube and hypergrid. These bounds
imply tighter lower bounds for local monotonicity reconstructors for these graphs
that nearly match the upper bounds given in [14].

1.1 Lower Bounds for Local Monotonicity Reconstruction

Property-preserving data reconstruction was introduced in [15]. In this model,
a reconstruction algorithm, called a filter, sits between a client and a dataset. A
dataset is viewed as a function f : D → R. The client accesses the dataset using
queries of the form x ∈ D to the filter. The filter looks up a small number of val-
ues in the dataset and outputs g(x), where g must satisfy some fixed structural
property P. Extending this notion, Saks and Seshadhri [14] defined local recon-
struction. A filter is local if it allows for a local (or distributed) implementation:
namely, if the output function g does not depend on the order of the queries.

Definition 1.2 (Local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R, and to an auxiliary
random string ρ (the “random seed”), and takes as input x ∈ D. For fixed f and
ρ, A runs deterministically on input x to produce an output Af,ρ(x) ∈ R. (Note
that a local filter has no internal state to store previously made queries.) The
function g(x) = Af,ρ(x) output by the filter must satisfy the following conditions:



Local Monotonicity Reconstruction and TC-Spanners 3

– For each f and ρ, the function g must satisfy P.
– If f satisfies P, then g must be identical to f with probability at least 1− δ,

for some error probability δ ≤ 1/3. The probability is taken over ρ.

In answering query x ∈ D, the filter A may ask for values of f at domain points
of its choice (possibly adaptively) using its oracle access to f . Each such access
made to the oracle is called a lookup to distinguish it from the client query x. A
local filter is non-adaptive if the set of domain points that the filter looks up to
answer an input query x does not depend on answers given by the oracle.

In [14], the authors also required that g must be sufficiently close to f : With
high probability (over the choice of ρ), Dist(g, f) ≤ B(n)·Dist(f,P), where B(n)
is called the error blow-up. (Dist(g, f) is the number of points in the domain
on which f and g differ. Dist(f,P) is ming∈P Dist(g, f).) If a local filter along
with Definition 1.2 satisfies this condition, we call it distance-respecting.

Local Monotonicity Reconstructors. The most studied property in the local re-
construction model is monotonicity of functions [14, 15]. A (distance-respecting)
filter for monotonicity can be used, for example, when a program runs correctly
only if its input is sorted. Then, instead of accessing the input directly, the pro-
gram can access it via a filter, which ensures that the program always sees a
sorted input, with small corrections when necessary. A local filter can be imple-
mented in a distributed manner with an additional guarantee that every program
run on the same not-quite-sorted input will see the same corrected version. This
can be done by supplying the same random seed to each copy of the filter.

To define monotonicity of functions, consider an n-element poset Vn and let
Gn = (Vn, E) be the relation graph, i.e., the Hasse diagram, for Vn. A function
f : Vn → R is called monotone if f(x) ≤ f(y) for all (x, y) ∈ E. We particularly
focus on posets which have the directed hypergrid graph as its relation graph.
The directed hypergrid, denoted Hm,d, has vertex set {1, 2, . . . ,m}d and edge set
{(x, y) : ∃ unique i ∈ {1, . . . , d} such that yi − xi = 1 and for j 6= i, yj = xj}.
For the special case m = 2, H2,d is called a hypercube and is also denoted by Hd.
A monotonicity filter needs to ensure that the output function g is monotone.
For instance, if Gn is a directed line, Hn,1, the filter needs to ensure that the
output sequence specified by g is sorted. To motivate reconstructors for hyper-
grids, consider the following scenario: An admissions office assigns a “score” to
rate applicants for admission, where the score consists of d attributes, such as
the applicant’s GPA, SAT results, essay quality, etc. Based on these scores, some
complicated (third-party) algorithm outputs the probability that a given appli-
cant should be accepted. The admissions office wants to make sure “on the fly”
that strictly better applicants are given higher probability, that is, probabilities
are monotone in scores. A hypergrid monotonicity filter may be used here.

In [14], the authors give a distance-respecting local monotonicity filter for the
directed hypergrid, Hm,d, that makes (logm)O(d) lookups per query. No non-
trivial monotonicity filter for the hypercube Hd (performing o(2d) lookups per
query) is known. One of the monotonicity filters in [15] is a local filter for the
directed line Hm,1 with O(logm) lookups per query (but a worse error blow up



4 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

than in [14]). As observed in [14], this upper bound is tight. A lower bound of 2αd,
on the number of lookups per query for a distance-respecting local monotonicity
filter on Hd with error blow-up 2βd, where α, β are sufficiently small constants,
appeared in [14]. Notably, all known local filters for the monotonicity property
are non-adaptive. Here we focus on the non-adaptive case as well.

We show how to construct sparse 2-TC-spanners from local monotonicity
reconstructors with low lookup complexity. These constructions, together with
our lower bounds on the size of 2-TC-spanners of the hypergrid and hypercube
(Section 1.2), imply lower bounds on lookup complexity of local monotonicity
reconstructors for these graphs with arbitrary error blow-up. Our transformation
is for non-adaptive reconstructors and is stated in Theorem 1.1.

Theorem 1.1 (Transformation from non-adaptive Local Monotonic-
ity Reconstructors to 2-TC-spanners). Let Gn = (Vn, E) be a poset on
n nodes. Suppose there is a non-adaptive local monotonicity reconstructor A for
Gn that looks up at most `(n) values to answer any query x ∈ Vn and has er-
ror probability at most δ. Then there is a 2-TC-Spanner of Gn with at most
O(n`(n) · dlog n/ log(1/δ)e) edges.

In Theorem 1.1 when δ is sufficiently small, the bounds on the 2-TC-Spanner
size become O(n`(n)). Theorem 1.1, together with the lower bounds in Theorem
1.3 and Theorem 1.2 (presented in the next section), implies the following lower
bounds on the lookup complexity of local monotonicity reconstructors for these
graphs with arbitrary error blow-up.

Corollary 1.1. Consider a nonadaptive local monotonicity filter with constant
error probability δ. If the filter is for functions f : Hm,d → R, it must perform

Ω
(

logd−1m
dd(2 log logm)d−1

)
lookups per query. If the filter is for functions f : Hd → R,

it must perform Ω
(
2αd/d

)
lookups per query, where α ≥ 0.1620.

Prior to this work, no lower bounds for monotonicity reconstructors on Hm,d
with dependence on both m and d were known. Unlike the bound in [14], our
lower bounds hold for any error blow-up and for non-distance-respecting filters.
Our bounds are tight for non-adaptive reconstructors. Specifically, for the hy-
pergrid Hm,d of constant dimension d, the number of lookups is (logm)Θ(d), and
for the hypercube Hd, it is 2Θ(d) for any error blow-up.

Testers vs. Reconstructors. In [13], it was shown how to construct monotonicity
testers from 2-TC-spanners. Unlike in the application to monotonicity testing,
here we show how to use lower bounds on the size of 2-TC-spanners to prove lower
bounds on complexity of local monotonicity reconstuctors. Lower bounds on the
size of 2-TC-spanners do not imply corresponding lower bounds on monotonicity
testers. For example, the best monotonicity tester on Hd runs in O(d2) time [16,
17], while, as shown in Theorem 1.3, every 2-TC-spanner of Hd must have size
exponential in d.



Local Monotonicity Reconstruction and TC-Spanners 5

1.2 Our Results on 2-TC-Spanners of the Hypercube and Hypergrid

Our main theorem gives a set of explicit bounds on S2(Hm,d):

Theorem 1.2 (Hypergrid). Let S2(Hm,d) denote the number of edges in the
sparsest 2-TC-spanner of Hm,d. Then5 for m ≥ 3,

Ω

(
md logdm

(2d log logm)d−1

)
= S2(Hm,d) ≤ md logdm.

The upper bound in Theorem 1.2 follows from a general construction of k-TC-
spanners for graph products for arbitrary k ≥ 2, presented in the full version.
The lower bound is the most technically difficult part of our work. It is proved by
a reduction of the 2-TC-spanner construction for [m]d to that for the 2× [m]d−1

grid and then directly analyzing the number of edges required for a 2-TC-spanner
of 2 × [m]d−1. We show a tradeoff between the number of edges in the 2-TC-
spanner of the 2 × [m]d−1 grid that stay within the hyperplanes {1} × [m]d−1

and {2} × [m]d−1 versus the number of edges that cross from one hyperplane
to the other. The proof proceeds in multiple stages. Assuming an upper bound
on the number of edges staying within the hyperplanes, each stage is shown to
contribute a substantial number of new edges crossing between the hyperplanes.
The proof of this tradeoff lemma is already non-trivial for d = 2 and is presented
in Section 3. The proof for d > 2 is deferred to the full version of the paper.

While Theorem 1.2 is most useful when m is large and d is small, in Section 4
we present bounds on S2(Hm,d) which are optimal up to a factor of d2m and,
thus, supersede the bounds from Theorem 1.2 when m is small. The general
form of these bounds is a somewhat complicated combinatorial expression but
they can be estimated numerically. Specifically, S2(Hm,d) = 2cmd poly(d), where
c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82 and c5 ≈ 3.24, each significantly smaller than
the exponents corresponding to the transitive closure sizes for the different m.

As a special case of the above, for m = 2 we obtain the following theorem
for the hypercube. The proof of this theorem is omitted from this version.

Theorem 1.3 (Hypercube). Let S2(Hd) be the number of edges in the sparsest
2-TC-spanner of Hd. Then

Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

As a comparison point for our bounds, note that the obvious bounds on
S2(Hd) are the number of edges in the d-dimensional hypercube, 2d−1d, and the
number of edges in the transitive closure of Hd, which is 3d−2d. (An edge in the
transitive closure of Hd has 3 possibilities for each coordinate: both endpoints
are 0, both endpoints are 1, or the first endpoint is 0 and the second is 1.
This includes self-loops, so we subtract the number of vertices in Hd to get the
desired quantity.) Thus, 2d−1d ≤ S2(Hd) ≤ 3d−2d. Similarly, the straightforward
bounds on the number of edges in a 2-TC-spanner ofHm,d in terms of the number

5 Logarithms are always to base 2 unless otherwise indicated.



6 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

of edges in the directed grid and in its transitive closure are dmd−1(m− 1) and(
m2+m

2

)d
−md, respectively.

1.3 Previous work on bounding Sk for other families of graphs

Thorup [18] considered a special case of TC-spanners of graphs G that have at
most twice as many edges as G, and conjectured that for all directed graphs G on
n nodes there are such k-TC-spanners with k polylogarithmic in n. He proved
this for planar graphs [19], but Hesse [20] gave a counterexample for general
graphs by constructing a family for which all n

1
17 -TC-spanners need n1+Ω(1)

edges. TC-spanners were studied for directed trees: implicitly in [17, 21–24] and
explicitly in [25]. For the directed line, [21] (and later, [22]) expressed Sk(Hn,1)
in terms of the inverse Ackermann function.

Lemma 1.1 ([21, 22, 13]). Let Sk(Hn,1) denote the number of edges in the
sparsest k-TC-spanner of the directed line Hn,1. Then S2(Hn,1) = Θ(n log n),
S3(Hn,1) = Θ(n log log n), S4(Hn,1) = Θ(n log∗ n) and, more generally, Sk(Hn,1)
= Θ(nλk(n)) where λk(n) is the inverse Ackermann function.

The same bound holds for directed trees [21, 23, 25]. An O(n log n ·λk(n)) bound
on Sk for H-minor-free graph families (e.g., bounded genus and bounded tree-
width graphs) was given in [13].

Notation. For a positive integer m, we denote {1, . . . ,m} by [m]. For x ∈ {0, 1}d,
we use |x| to denote the weight of x, that is, the number of non-zero coordinates
in x. Level i in a hypercube contains all vertices of weight i. The partial order
� on the hypergrid Hm,d is defined as follows: x � y for two vertices x, y ∈ [m]d

iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y, if x and y are distinct vertices in [m]d

satisfying x � y. Vertices x and y are comparable if either y is above x (that is,
x � y) or y is below x (that is, y � x). We denote a path from v1 to v`, consisting
of edges (v1, v2), (v2, v3), . . . , (v`−1, v`) by (v1, . . . , v`).

2 From Monotonicity Reconstructors to 2-TC-spanners

In this section, we prove Theorem 1.1.

Proof (of Theorem 1.1). Let A be a local reconstructor given by the statement
of the theorem. Let F be the set of pairs (x, y) with x, y in Vn such that x ≺ y.
Then, F is of size at most

(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set

{z ∈ Vn : x � z � y}. Define function f (x,y)(v) to be 1 on all v � x and all
v � y, and 0 everywhere else. Also, define function f (x,y)(v), which is identical
to f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Both, f (x,y) and
f (x,y), are monotone functions for all (x, y) ∈ F . Let Aρ be the deterministic
algorithm which runs A with the random seed fixed to ρ. We say a string ρ is



Local Monotonicity Reconstruction and TC-Spanners 7

good for (x, y) ∈ F if filter Aρ on input f (x,y) returns g = f (x,y) and on input
f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s ≤ d2 log n/ log(1/2δ)e, con-
sisting of strings used as random seeds by A, such that for every (x, y) ∈ F some
string ρ ∈ S is good for (x, y). We choose S by picking strings used as random
seeds uniformly and independently at random. Since A has error probability at
most δ, we know that for every monotone f , with probability at least 1−δ (with
respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed
(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤
(2 · δ)s, which, for s = d2 log n/ log(1/2δ)e, is at most 1/n2 < 1/|F|. By a union
bound over F , Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1. Thus,
there exists a set S with required properties.

We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described
above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ on
query x. (Note that the set Nρ(x) is well-defined since algorithm A is assumed
to be non-adaptive). For each string ρ ∈ S and each vertex x ∈ Vn, connect x
to all comparable vertices in Nρ(x) (other than itself) and orient these edges
according to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists
(x, y) ∈ F with no path of length at most 2 in H from x to y. Consider ρ ∈ S
which is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all
v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by definition of
f (x,y). For a v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).
All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any points in cube(x, y). Therefore, h is well-defined. Since ρ
is good for (x, y) and h is identical to f (x,y) for all lookups made on query x,
Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not
monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · `(n) · s ≤ n`(n) · d2 log n/ log(1/2δ)e. ut

3 2-TC-Spanners for low-dimensional hypergrids

In this section, we describe the proof of Theorem 1.2 which gives explicit bounds
on the size of the sparsest 2-TC-spanner for Hm,d. The upper bound in The-
orem 1.2 follows straightforwardly from a more general statement about TC-
spanners of product graphs; details are in the full version. Here, we show the
lower bound on S2(Hm,d). Actually, in this extended abstract, we treat only the
special case of this lower bound for d = 2, since it already contains most of the



8 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

difficulty of the larger dimensional case. The extension to arbitrary dimension is
deferred to the full version due to space constraints.

Theorem 3.1. Any 2-TC-spanner of the 2-dimensional grid Hm,2 must have

Ω
(
m2 log2m
loglogm

)
edges.

One way to prove the Ω(m logm) lower bound on the size of a 2-TC-spanner
for the directed line Hm,1, stated in Lemma 1.1, is to observe that at least
bm2 c edges are cut when the line is halved: namely, at least one per vertex pair
(v,m − v + 1) for all v ∈

[
bm2 c

]
. Continuing to halve the line recursively, we

obtain the desired bound.
A natural extension of this approach to proving a lower for the grid is to

recursively halve the grid along both dimensions, hoping that each such op-
eration on an m × m grid cuts Ω(m2 logm) edges. This would imply that
the size S(m) of a 2-TC-spanner of the m × m grid satisfies the recurrence
S(m) = 4S(m/2) + Ω(m2 logm); that is, S(m) = Ω(m2 log2m), matching the
upper bound in Theorem 1.2.

An immediate problem with this approach is that in some 2-TC-spanners of
the grid only O(m2) edges connect vertices in different quarters. One example of
such a 2-TC-spanner is the graph containing the transitive closure of each quarter
and only at most 3m2 edges crossing from one quarter to another: namely, for
each node u and each quarter q with vertices comparable to u, this graph contains
an edge (u, vq), where vq is the smallest node in q comparable to u.

The TC-spanner in the example above is not optimal because it has too
many edges inside the quarters. The first step in our proof of Theorem 3.1 is
understanding the tradeoff between the number of edges crossing the cut and
the number of edges internal to the subgrids, resulting from halving the grid
along some dimension. The simplest manifestation of this tradeoff occurs when
a 2 ×m grid is halved into two lines. (In the case of one line, there is no trade
off: the Ω(m) bound on the number of crossing edges holds even if each half-line
contains all edges of its transitive closure.) Lemma 3.1 formulates the tradeoff
for the two-line case, while taking into account only edges needed to connect
comparable vertices on different lines by paths of length at most 2:

Lemma 3.1 (Two-Lines Lemma). Let U be a graph with vertex set [2]× [m]
that contains a path of length at most 2 from u to v for every u ∈ {1}× [m] and
v ∈ {2} × [m], where u � v. An edge (u, v) in U is called internal if u1 = v1,
and crossing otherwise. If U contains at most m log2m

32 internal edges, it must
contain at least m logm

16 log logm crossing edges.

Note that if the number of internal edges is unrestricted, a 2-TC-spanner ofHm,2
may have only m crossing edges.

Proof. The proof proceeds in logm
2 log logm stages dealing with pairwise disjoint sets

of crossing edges. In each stage, we show that U contains at least m
8 crossing

edges in the prescribed set.



Local Monotonicity Reconstruction and TC-Spanners 9

In the first stage, divide U into log2m blocks, each of length m
log2m

: namely, a

node (v1, v2) is in block i if v2 ∈
[

(i−1)·m
log2m

+ 1, i·m
log2m

]
. Call an edge long if it starts

and ends in different blocks, and short otherwise. Assume, for contradiction, that
U contains fewer than m

8 long crossing edges.
Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈

[
m
2

]
(right

otherwise). Also, call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal
if u1 = v1 = 2. Let L be the set of low left nodes that are not incident to
long crossing edges. Similarly, let R be the set of high right nodes that are not
incident to long crossing edges. Since there are fewer than m

8 long crossing edges,
|L| > m

4 and |R| > m
4 .

L

R
midline

high nodes & 
internal edges

left nodes right nodes

block

long internal edge

low nodes & 
internal edges

u

v

Fig. 1. Illustration of the first stage in the proof of Lemma 3.1.

A node u ∈ L can connect to a node v ∈ R via a path of length at most
2 only by using a long internal edge. Observe that each long low-internal edge
can be used by at most m

log2m
such pairs (u, v): one low node u and high nodes

v from one block. This is illustrated in Figure 1. Analogously, every long high-
internal edge can be used by at most m

log2m
such pairs. Since |L| · |R| > m2

16 pairs
in L × R connect via paths of length at most 2, graph U contains more than
m2

16 ·
log2m
m = m log2m

16 long internal edges, which is a contradiction.
In each subsequent stage, call blocks used in the previous stage megablocks,

and denote their length by B. Subdivide each megablock into log2m blocks of
equal size. Call an edge long if it starts and ends in different blocks, but stays
within one megablock. Assume, for contradiction, that U contains fewer than m

8
long crossing edges.

Call a node (v1, v2) left if it is in the left half of its megablock, that is,
if v2 ≤ `+r

2 whenever (v1, v2) is in a megablock [2] × {`, . . . , r}. (Call it right
otherwise). Consider megablocks containing fewer than B

4 long crossing edges
each. By an averaging argument, at least m

2B megablocks are of this type. (Recall
that there are m

B megablocks in total). Within each such megablock more than B
4

low left nodes and more than B
4 high right nodes have no incident long crossing



10 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

edges. By the argument from the first stage, each such megablock contributes
more than B2

16b long internal edges, where b = B
log2m

is the size of the blocks.

Hence there must be more than B2

16b ·
m
2B = m log2m

32 long internal edges, which is
a contradiction to the fact that U contains at most m log2m

32 internal edges.
We proceed to the next stage until each block is of length 1. Therefore, the

number of stages, t, satisfies m
log2t m

= 1. That is, t = logm
2 log logm , and each stage

contributes m
8 new crossing edges, as desired. ut

Next we generalize Lemma 3.1 to understand the tradeoff between the num-
ber of internal edges and crossing edges resulting from halving a 2-TC-spanner
of a 2`×m grid with the usual partial order.

Lemma 3.2. Let S be a 2-TC-spanner of the directed [2`] × [m] grid. An edge
(u, v) in S is called internal if u1, v1 ∈ [`] or u1, v1 ∈ {`+ 1, . . . , 2`}, and crossing
otherwise. If S contains at most `m log2m

64 internal edges, it must contain at least
`m logm

32 log logm crossing edges.

Proof. For each i ∈ [`], we match the lines {i} × [m] and {2` − i + 1} × [m].
Observe that a path of length at most 2 between the matched lines cannot use
any edges with both endpoints in {i+1, . . . , 2`− i}× [m]. We modify S to ensure
that there are no edges with only one endpoint in {i+ 1, . . . , 2`− i}× [m] for all
i ∈ [`], and then apply Lemma 3.1 to the matched pairs of lines.

Call the [`]× [m] subgrid and all vertices and edges it contains low, and the
remaining {`+1, . . . , 2`}×[m] subgrid and its vertices and edges high. Transform
S into S′ as follows: change each low internal edge (u, v) to (u, (u1, v2)), change
each high internal edge (u, v) to ((v1, u2), v), and finally change each crossing
edge ((i1, j1), (2`− i2 + 1, j2)) to ((i, j1), (2`− i+ 1, j2)), where i = min(i1, i2).
Intuitively, we are projecting the edges in S to be fully contained in one of the
matched pairs of lines, while preserving whether the edge is internal or crossing.
Crossing edges are projected onto the outer matched pair of lines chosen from
the two pairs that contain the endpoints of a given edge.

Clearly, S′ contains at most the number of internal (crossing) edges as S.
Observe that S′ contains a path of length at most 2 from u to v for every
comparable pair (u, v) where u is low, v is high, and u and v belong to the same
pair of matched lines. Indeed, since S is a 2-TC-spanner, it contains either the
edge (u, v) or a path (u,w, v). In the first case, S′ also contains (u, v). In the
second case, if (u,w) is a crossing edge S′ contains (u, (v1, w2), v), and if (u,w) is
an internal edge S′ contains (u, (u1, w2), v). As claimed, each edge in S′ belongs
to one of the matched pairs of lines.

Finally, we apply Lemma 3.1. If S contains at most `m log2m
64 internal edges,

then so does S′, and so at least half
(
i.e., `

2

)
of the matched line pairs each contain

at most m log2m
32 internal edges. By Lemma 3.1, each of these pairs contributes at

least m logm
16 log logm crossing edges. Thus S′ must contain at least `m logm

32 log logm crossing
edges. Since S contains as many crossing edges as S′, the lemma follows. ut



Local Monotonicity Reconstruction and TC-Spanners 11

Now we prove Theorem 3.1 by recursively halving Hm,2 along the horizontal
dimension. Some resulting ` ×m subgrids may violate Lemma 3.2, but we can
guarantee that the lemma holds for a constant fraction of the recursive steps for
which ` ≥

√
m. This is sufficient for obtaining the lower bound in the theorem.

Proof (of Theorem 3.1). Assume m is a power of 2 for simplicity. For each step
i ∈ {1, . . . , 1

2 logm}, partition Hm,2 into the following 2i−1 equal-sized subgrids:
{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m − li + 1, . . . ,m} × [m] where
li = m/2i−1. For each of these subgrids, define internal and crossing edges as in
Lemma 3.2. Now, suppose that there exists a step i such that at least half of the
2i−1 subgrids have > lim log2m

64 internal edges. Since at a fixed i, the subgrids
are disjoint, there are 2i−1Ω(lim log2m) = Ω(m2 log2m) edges in S, proving the
theorem. On the other hand, suppose that for every i ∈ {1, . . . , 1

2 logm}, at least
half of the 2i−1 subgrids have ≤ lim log2m

64 internal edges. Then, applying Lemma
3.2, the number of crossing edges in those subgrids is ≥ lim logm

32 log logm . Counting over
all steps i and for all appropriate subgrids from those steps, the number of edges
in S is bounded by Ω

(
m2 logm logm

log logm

)
= Ω

(
m2 log2m

log logm

)
. ut

In the full version, we extend the above proof to establish lower bounds on
S2(Hm,d) for arbitrary d ≥ 2. The main technical deferred result is a trade-
off lemma between internal and crossing edges with respect to two (d − 1)-
dimensional hyperplanes. An important part of the generalization is the appro-
priate definition of the notions of blocks and megablocks, so that the iterative
argument in the proof of Lemma 3.1 applies in the high-dimensional setting.

4 2-TC-spanners for high-dimensional hypergrids

Theorem 4.1 gives matching upper and lower bounds up to a d2m factor in terms
of an expression involving binomial coefficients. This result supersedes the results
of the previous section when, for instance, m is constant and d is growing.

Before stating Theorem 4.1, we introduce some notation.

Definition 4.1. For the hypergrid Hm,d , define a level to be a set of vertices,
indexed by vector i ∈ [d]m with i1 + · · · + im = d, that consists of vertices
x = (x1, . . . , xd) ∈ [m]d containing i1 positions of value 1, i2 positions of value
2, . . . , and im positions of value m.

Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multino-
mial coefficient(

d

i

)
=
(

d

i1, ..., id

)
=
(
d

i1

)(
d− i1
i2

)(
d− i1 − i2

i3

)
. . .

(
d−

∑m−1
l=1 il
im

)
.

Indeed, there are
(
d
i1

)
choices for the coordinates of value 1. For each such choice

there are
(
d−i1
i2

)
choices for the coordinates of value 2, and repeating this argu-

ment one obtains the above expression.



12 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

For levels i, j ∈ [d]m, say j majorizes i, denoted j � i, if j contains a vertex

which is above some vertex in i, that is, if
m∑
`=t

j` ≥
m∑
`=t

i` for all t ∈ {m,m −

1, ..., 1}.
For j � i, the number of vertices y at level i comparable to a fixed vertex x

at level j is M(i, j):

(
jm
im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

( m∑
l=1

jl −
m∑
l=2

il

i1

)
.

Indeed, there are
(
jm
im

)
choices for the coordinates of value m in y. For each such

choice, there are
(
jm+jm−1−im

im−1

)
choices for the coordinates of value m − 1 in y,

and one can repeat this argument to obtain the claimed expression.
For j � i, the number of vertices y at level j comparable to a fixed vertex x

at level i is

N (i, j) =
M(i, j)

(
d
j

)(
d
i

) .

Indeed, there are M(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and

level i contains
(
d
i

)
vertices. Since, by symmetry, each vertex in i is comparable

to the same number of vertices in level j, we get the desired expression.

Theorem 4.1. Let

B(m, d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid
Hm,d is O

(
d2mB(m, d)

)
and Ω (B(m, d)).

The proof for the upper bound part of Theorem 4.1 appears in the full version.
We now prove the lower bound.

Lemma 4.1. Any 2-TC-spanner of Hm,d has at least Ω(B(m, d)) many edges,
where B(m, d) is defined as in Theorem 4.1.

Proof. Let S be a 2-TC-spanner for Hm,d. We will count the edges in S that
occur on paths connecting two particular levels of Hm,d. Let Pi,j = {(v1, v2) :
v1 ∈ i, v2 ∈ j, v1 ≺ v2}. We will lower bound e∗i,j, the number of edges in
the paths of length at most 2 in S, that connect the pairs Pi,j. Notice that
|P (i, j)| =

(
d
j

)
M(i, j).

Let ek,` denote the number of edges in S that connect vertices in level k to
vertices in level `. Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (1)



Local Monotonicity Reconstruction and TC-Spanners 13

We say that a vertex v covers a pair of vertices (v1, v2) if S contains the edges
(v1, v) and (v, v2) or, for the special case v = v1, if S contains (v1, v2). Let V (k)

i,j

be the set of vertices in level k that cover pairs in Pi,j. Let αk be the fraction of
pairs in Pi,j that are covered by the vertices in V (k)

i,j . Since each pair in Pi,j must
be covered by a vertex in levels k with i ≺ k ≺ j, we must have

∑
i≺k≺j αk ≥ 1.

For any vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from

vertices of level i incident to v and let outv be the number of outgoing edges to
vertices of level j incident to v. For each level k with i ≺ k ≺ j, since each vertex
v ∈ V (k)

i,j covers inv · outv pairs,∑
v∈V (k)

i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)
(
d

j

)
. (2)

We upper bound
∑
v∈V (k)

i,j

inv · outv as a function of ei,k + ek,j, and then use

Equation (2) to lower bound ei,k + ek,j. For all k with i ≺ k ≺ j, variables inv
and outv satisfy the following constraints:∑

v∈V (k)
i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V (k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤M(i,k) ∀v ∈ V (k)
i,j , outv ≤ N (k, j) ∀v ∈ V (k)

i,j .

The last two constraints hold because inv and outv count the number of edges
to a vertex of level k from vertices of level i, and from a vertex of level k to
vertices of level j, respectively. Using these bounds we obtain∑
v∈V (k)

i,j

inv·outv ≤
∑

v∈V (k)
i,j

M(i,k) · outv =M(i,k)·
∑

v∈V (k)
i,j

outv ≤M(i,k)·(ei,k+ek,j).

Similarly,
∑
v∈V (k)

i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,∑
v∈V (k)

i,j

inv · outv ≤ (ei,k + ek,j) min {M(i,k),N (k, j)} .

From Equation (2), ei,k + ek,j ≥ αkM(i, j)
(
d

j

)
1

min {M(i,k),N (k, j)}
for all

i ≺ k ≺ j. Applying Equation (1) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}
M(i, j)

(
d

j

)

≥ min
k

1
min {M(i,k),N (k, j)}

M(i, j)
(
d

j

)
= min

k

1
M(i,k)N (k, j)

M(i, j)
(
d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner is |S| ≥
B(m, d). ut



14 Bhattacharyya, Grigorescu, Jha, Jung, Raskhodnikova, Woodruff

References

1. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13 (1989)
99–116

2. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38 (2001)
170–183

3. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J.
Algorithms 50 (2004) 79–95

4. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables.
JACM 36 (1989) 510–530

5. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. In: SODA. (2002) 844–851

6. Thorup, M., Zwick, U.: Compact routing schemes. In: ACM Symposium on Parallel
Algorithms and Architectures. (2001) 1–10

7. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.
Comput. 18 (1989) 740–747

8. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM J. Comput. 28 (1998) 210–236

9. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected
shortest paths. JACM 47 (2000) 132–166

10. Elkin, M.: Computing almost shortest paths. In: PODC. (2001) 53–62
11. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-

pected Õ(n2) time. ACM Transactions on Algorithms 2 (2006) 557–577
12. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52 (2005) 1–24
13. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:

Transitive-closure spanners. In: SODA. (2009) 932–941
14. Saks, M., Seshadhri, C.: Local monotonicity reconstruction. SIAM Journal on

Computing 39 (2010) 2897–2926
15. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-

struction. Algorithmica 51 (2008) 160–182
16. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing

monotonicity. Combinatorica 20 (2000) 301–337
17. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky,

A.: Improved testing algorithms for monotonicity. In: RANDOM. (1999) 97–108
18. Thorup, M.: On shortcutting digraphs. In: WG. (1992) 205–211
19. Thorup, M.: Shortcutting planar digraphs. Combinatorics, Probability & Com-

puting 4 (1995) 287–315
20. Hesse, W.: Directed graphs requiring large numbers of shortcuts. In: SODA. (2003)

665–669
21. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product

queries. Technical Report 71/87, Tel-Aviv University (1987)
22. Atallah, M.J., Frikken, K.B., Fazio, N., Blanton, M.: Dynamic and efficient key

management for access hierarchies. In: ACM Conference on Computer and Com-
munications Security. (2005) 190–202

23. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Al-
gorithmica 2 (1987) 337–361

24. Yao, A.C.C.: Space-time tradeoff for answering range queries (extended abstract).
In: STOC. (1982) 128–136

25. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23 (1997) 139–159


