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Abstract: The Kramers-Kronig (KK) receiver is capable of retrieving the phase information 
of optical single-sideband (SSB) signal from the optical intensity when the optical signal 
satisfies the minimum phase condition. Thus, it is possible to direct-detect the optical SSB 
signal without suffering from the signal-signal beat interference and linear transmission 
impairments. However, due to the spectral broadening induced by nonlinear operations in the 
conventional KK algorithm, it is necessary to employ the digital upsampling at the beginning 
of the digital signal processing (DSP). The increased number of samples at the DSP would 
hinder the real-time implementation of this attractive receiver. Hence, we propose a new DSP 
algorithm for KK receiver operable at 2 samples per symbol. We adopt a couple of 
mathematical approximations to avoid the use of nonlinear operations such as logarithm and 
exponential functions. By using the proposed algorithm, we demonstrate the transmission of 
112-Gb/s SSB orthogonal frequency-division-multiplexed signal over an 80-km fiber link. 
The results show that the proposed algorithm operating at 2 samples per symbol exhibits 
similar performance to the conventional KK one operating at 6 samples per symbol. We also 
present the error analysis of the proposed algorithm for KK receiver in comparison with the 
conventional one. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

There is an abiding interest in the direct-detection (DD) receiver for high-speed optical 
transmission system, due to its intrinsically simple structure and cost-effectiveness [1]. 
However, the square-law detection of optical double-sideband signal always suffers from the 
dispersion-induced RF power fading. Since the phase information of light is lost upon DD, 
this fading limits the maximum transmission distance over dispersive single-mode fiber when 
no optical dispersion compensation is employed. In this regard, the optical single-sideband 
(SSB) transmission has recently drawn a great deal of attention since it not only overcomes 
the dispersion-induced RF power fading but it can also double the spectral efficiency (SE). 
However, due to the signal-signal beat interference (SSBI) inherent in the direct detection of 
optical SSB signal, it was necessary to sacrifice either the SE by inserting a frequency gap 
between the carrier and SSB signal [2] or the receiver sensitivity by increasing the carrier-to-
signal power ratio (CSPR) [3]. Recently, the Kramers-Kronig (KK) receiver has been 
proposed to overcome these problems [4]. In this receiver, the phase information (lost upon 
DD) can be retrieved from the intensity information by using digital signal processing (DSP) 
if the optical signal satisfies the minimum phase condition. Thus, this receiver allows us to 
cancel the SSBI components without having a large CSPR (in comparison with other SSBI 
cancellation techniques [5]). It is also possible to compensate for linear transmission 
impairments (such as fiber’s chromatic dispersion) using the electrical equalization technique 
at the receiver [6]. This DD receiver can be used to reconstruct the electric fields of 
polarization-division-multiplexed signals when a carrier is provided at the receiver [7,8]. 

One of technical challenges associated with the implementation of the KK receiver is that 
the DSP needs to operate a couple of times faster than the Nyquist sampling rate. This is 
because some nonlinear operations (such as logarithm and exponential functions) required to 
perform the KK algorithm broaden the signal’s spectrum significantly. To accommodate such 
spectral broadening, the digital upsampling is typically employed at the beginning of DSP. As 
a result, a faster processing speed and a larger memory would be required in the DSP chip. 
For example, it is expected that the KK receiver should run at as fast as 192 Gsample/s (i.e., 
three times the Nyquist sampling rate) when it is used in the detection of the 32-Gbaud signal. 
This high sampling rate of DSP would be a major obstacle to the realization of the KK 
receiver. Even though the parallel implementation of DSP could lower the actual processing 
speed inside the DSP chip, the digital upsampling would increase the complexity and power 
consumption considerably. An alternative DSP algorithm for KK receiver which avoids the 
digital upsampling was proposed in [4]. Due to multiple iterations, however, it is expected 
that this algorithm would incur a significant latency and complexity when implemented. 

We have recently proposed the non-iterative DSP algorithm for KK receiver operable 
without the digital upsampling [10]. Thus, it is possible to operate this algorithm at the 
Nyquist sampling rate [i.e., 2 samples per symbol (SPS)]. The key idea is to utilize 
appropriate mathematical approximations to replace the nonlinear operations which broaden 
the spectrum significantly in DSP [10]. In this paper, we provide the detailed derivations of 
our approximations and carry out the error analysis. Also presented in this paper is the impact 
of the sampling rate on the performance of the proposed algorithm. We evaluate the 
performance of the proposed algorithm in a single-channel 112-Gb/s SSB orthogonal 
frequency-division-multiplexing (OFDM) transmission system. We show that the proposed 
algorithm (SPS = 2) exhibits similar performance to the conventional one (SPS = 6). 

2. Principles 

An optical SSB signal impinging upon the DD receiver can be expressed as 

 ( ) ( )0 ˆ( )E t E s t js t= + +  (1) 
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where E0 is the optical carrier, and s(t) and ŝ(t) are the Hilbert transform pairs for the signal 
s(t). It should be noted that s(t) contains all the information to be delivered, while the 
redundant information in ŝ(t) makes E(t) to be an SSB signal. In general, the magnitude of the 
optical carrier should be large enough to satisfy the minimum phase condition [4]. At the 
receiver, we obtain the electrical signal I(t) after the square-law detection: 

 ( ) ( ) ( ) ( )2 2

0 ˆI t E t E s t js tη= = + +  (2) 

where η is the receiver responsivity and we assume η = 1 without loss of generality. 

2.1 The conventional DSP algorithm for KK receiver 

In the conventional KK algorithm, the phase information can be retrieved from the intensity 
information through the Hilbert transform as 

 ( ) ( )lnt H I tφ  =    (3) 

where ln(·) is the natural logarithm operation and H[·] is the Hilbert transform operator. Then, 
the electrical field of the optical signal can be recovered by 

 ( ) ( ) ( )expE t I t j tφ=     (4) 

A block diagram of the conventional KK algorithm is illustrated in Fig. 1(a). The digital 
upsampling precedes the DSP blocks for this KK algorithm to accommodate the spectral 
broadening due to the nonlinear operations including logarithm and exponential functions. 
Recent experimental demonstrations show that typical values of SPS range from 4 to 6 [5]- 
[9]. The digital downsampling is placed at the end of the block diagram for the subsequent 
DSP such as the electrical equalization and demodulation. 
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Fig. 1. Block diagrams of (a) the conventional KK receiver [5] and (b) proposed KK receiver. 

2.2 The proposed DSP algorithm for KK receiver 

Here we propose the use of appropriate mathematical approximations to avoid the use of 
some nonlinear operations found in the conventional KK algorithm. First, the square-root of 
I(t) can be approximated to the second-order binomial expansion as [11] 
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(5) 

where O(·) denotes the order of approximation. In the last equation of Eq. (5), the 3rd term 
represents the SSBI component. 

In our derivations, we assume that the magnitude of optical carrier is much larger than the 
magnitude of signal, i.e., E0 >> |s(t)|. Fortunately, this assumption is satisfied in most cases 
due to the minimum phase condition. Thus, the signal’s phase can be approximated as 

 ( ) ( )
( )

( ) ( )1 2
0

0 0

ˆ ˆ
tan

s t s t
t O E

E s t E
φ − −= = +

+
 (6) 

From Eqs. (3) and (6), we then obtain 

 
( ) ( )

0

ˆ
ln

s t
H I t

E
 ≅    (7) 

Then, we can express ( )ln I t  by using the second-order Taylor’s expansion at ( ) 2
0I t E=  as 
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      = − + = − + − +       

 (8) 

In Eq. (8), we can ignore the third and fourth constant terms on the right hand side since these 
DC components are removed by the subsequent Hilbert transform. Finally, combining three 
Eqs. (5), (7) and (8) yields the real part of the optical field, E0 + s(t), as follows: 

 ( ) ( ) ( ) ( )
2

0
0 2

0 0

1
2

2 2

I t I tE
E s t I t H

E E

    + ≅ − − 
    

 (9) 

The imaginary part of the optical field can be obtained by taking the Hilbert transform of the 
real part. Figure 1(b) shows the block diagram of the proposed KK algorithm. 

It is worth emphasizing that we do not simply replace some of the nonlinear operations 
with their approximations. As shown in Fig. 1(b), we express the electric field of the optical 
signal, E(t), as the sum of real and imaginary parts, rather than their phasor form (i.e., 
magnitude multiplied by the exponential phase). As a result, the nonlinear operations such as 
logarithm and exponential functions are now removed in this newly proposed algorithm. 
Although the square-root operation [found in (4)] is still used in (9), the performance 
improvement achieved by using the digital upsampling is not significant (in comparison with 
the conventional algorithm) since this nonlinear operation slightly broadens the signal’s 
spectrum. 
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3. Experiment 

We carry out transmission experiments to evaluate the performance of the proposed DSP 
algorithm for KK receiver operable at the Nyquist sampling rate without digital upsampling. 
Figure 2(a) shows the experimental setup. We first generate a 112-Gb/s SSB OFDM signal. A 
pseudo-random bit sequence with the length of 215-1 is mapped onto 16-quadrature amplitude 
modulation (QAM) symbols and then loaded into 448 subcarriers out of 1024 subcarriers. The 
unmodulated subcarriers are padded to zeros. A 1024-point inverse fast Fourier transform is 
then performed to generate an OFDM signal. Cyclic prefix and preamble symbols are then 
appended to this OFDM signal. The net data rate of the signal is 103.4 Gb/s, including the 
overhead of forward error correction. After parallel-to-serial conversion, the real and 
imaginary parts of the signal are sent to an arbitrary waveform generator (AWG) operating at 
64 Gsample/s. An optical signal from an external-cavity laser (@1550 nm) is then modulated 
by using an in-phase and quadrature (IQ) modulator. The CSPR is adjusted by giving a bias 
offset from the quadrature point of the IQ-modulator and measured by using an optical 
spectrum analyzer [5]. We employ an optical booster amplifier (noise figure = 5 dB) 
operating in the constant power mode at the output of the IQ modulator. The fiber launch 
power into standard single-mode fiber (SSMF) is set to be 7 dBm to avoid provoking the 
stimulated Brillouin scattering. After the transmission, the optical signal is detected by using 
an optically pre-amplified receiver (noise figure = 3.3 dB, optical gain = 42 dB). The received 
optical power is measured before the pre-amplifier. An optical bandpass filter (bandwidth = 
0.4 nm) is used to reject the amplified spontaneous emission noise outside of the signal 
spectrum. Figure 2(b) shows the optical spectrum of the SSB OFDM signal at the receiver. 
The upper sideband is suppressed by >30 dB. After DD, the signal is digitized by using a real-
time oscilloscope operating at 80 Gsample/s. The offline DSP is composed of resampling, KK 
algorithm, synchronization based on symbol correlation, fast Fourier transform, and one-tap 
channel equalization. The loss of DC-term in our AC-coupled receiver is easily recovered by 
sweeping the magnitude of the DC component in our offline DSP. Finally, the bit-error rate 
(BER) is calculated by using direct error counting of 1 million bits. 

 

Fig. 2. (a). Experiment setup. ECL: external-cavity laser, AWG: arbitrary waveform generator, 
EDFA: Er-doped fiber amplifier, BPF: band-pass filter, PD: photodetector. (b) Optical 
spectrum measured before the PD. 

We first find the magnitude of optical carrier, E0, by sweeping it while measuring the BER 
performance due to its loss by the AC-coupled receiver. It should be noted that the same 
procedure is required for the conventional KK algorithm when the AC-coupled receiver is 
used. This is because I(t) should be always positive as shown in Eq. (3) and its value is 
dependent upon E0. Figure 3 shows the measured BER performance after 80-km transmission 
as a function of E0 when the CSPR is 10 dB and the received optical power is −19 dBm. The 
results show that the BER performance is sensitive to the estimated E0 value when it is 
smaller than the optimum E0 value. However, this sensitivity is ameliorated beyond the 
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optimum value. From this measurement, we find out that the optimum E0 value is 0.1 in this 
case. It should be noted that in the case where a DC-coupled receiver is employed, we can 
estimate E0 by using the following equation. 

 0

1
1

1
E DC

CSPR
 = × − + 

 (10) 

Here, DC is the DC component at the receiver. This equation can be approximated as DC1/2 
when the CSPR is large. Equation (10) also implies that the E0 value remains constant as long 
as the received optical power and the CSPR are unchanged. 

 

Fig. 3. BER performance as a function of the magnitude of optical carrier. 

 

Fig. 4. Experimental results. (a) Measured receiver sensitivity (@BER = 3.8 × 10−3) versus 
CSPR after 80-km transmission, (b) BER curves. 

Figure 4(a) shows the measured receiver sensitivity (@ BER = 3.8 × 10−3) as a function of 
CSPR after transmission over 80-km long SSMF. The detected signal is resampled at 2 SPSs 
and no digital upsampling is performed in the proposed algorithm. The result shows that we 
achieve the best receiver sensitivity of −20.4 dBm when the CSPR is 10 dB. Also shown in 
this plot for comparison is the receiver sensitivities obtained by using the conventional 
algorithm for various SPSs. In this case, the receiver sensitivity is improved with the number 
of SPSs. The CSPR which gives us the best receiver sensitivity is also reduced as we increase 
the number of SPSs. For example, the receiver sensitivity is measured to be −17.0 dBm when 
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the SPS is 2 and the CSPR is 13 dB. However, the best receiver sensitivity of −20.8 dBm is 
achieved when the SPS and CSPR are 6 and 10 dB, respectively. This is because as 2 SPS is 
not sufficient enough to accommodate the bandwidth expansion induced by nonlinear 
operations (e.g., logarithm and exponential functions) in the conventional KK algorithm. On 
the other hand, the proposed algorithm (SPS = 2) incurs a 0.4-dB penalty with respect to the 
conventional one (SPS = 6). It has been recently shown that the KK receiver requires the least 
CSPR value for the best receiver sensitivity when compared with SSBI cancellation 
techniques [5]. The results show that the proposed algorithm provides the same optimum 
CSPR value for the receiver sensitivity as the conventional algorithm. It is worth noting that 
the optimum CSPR value for the receiver sensitivity is smaller than the CSPR value which 
satisfies the minimum phase condition completely. This is because the receiver sensitivity 
would not deteriorate much by a slight violation of minimum phase condition when the signal 
has a wide range of amplitude variation. 

Figure 4(b) shows the BER performance after 0- and 80-km transmissions for the 
proposed (SPS = 2) and conventional (SPS = 6) DSP algorithms for KK receiver. The CSPR 
is set to be 10 dB, which is found to be the optimum in Fig. 4(a). We can see that the 
proposed algorithm exhibits similar performance to the conventional one after the 
transmissions. 

4. Discussions 

4.1 Error analysis of the proposed algorithm 

The proposed DSP algorithm for KK receiver utilizes three mathematical approximations to 
recover the electric field of the detected optical SSB signal, without employing logarithm and 
exponential functions. Those approximations are (i) the second-order binomial approximation 
to estimate the square root of the DD signal [in Eq. (5)], (ii) the first-order Taylor 
approximation of tan−1(·) function to estimate the phase φ [in Eq. (6)], and (iii) the second-
order Taylor approximation of logarithm function [in Eq. (8)]. Altogether, Eq. (9) estimates 
the real part of the electric field by using all the approximations mentioned above. Therefore, 
there exist a slight discrepancy between the actual waveform of the electric field and the 
waveform recovered from the proposed algorithm. To investigate this discrepancy, we carry 
out a computer simulation where a random waveform in the form of optical SSB modulation 
is generated and then the mean squared errors between the original and the recovered 
waveforms are estimated. The random waveform is sampled at the Nyquist sampling rate and 
the total number of samples is 107. The normalized mean squared error (NMSE) in decibel is 
calculated by using [12] 

 
( ) ( ){ }
( ){ } ( ){ }

2

1010 log
E x n x n

NMSE
E x n E x n

−  
= ⋅




 (11) 

where n is the time index, x(n) is the sampled value of the original waveform at time n, x̃(n) is 
the recovered value obtained from the approximation, and E[·] is the expectation notation. 
Figure 5 shows the NMSEs of Eqs. (5) and (9) as a function of CSPR. Since Eq. (5) employs 
the second-order binomial approximation only, it exhibits a lower NMSE than Eq. (9). Thus, 
the NMSE difference between Eqs. (9) and (5) should be attributed to the other two 
approximations [i.e., first- and second-order Taylor approximations in Eqs. (6) and (8)]. The 
result shows that the NMSE difference between these two approximations is negligible when 
the CSPR is larger than 4 dB. This implies that the accuracy of our proposed DSP algorithm 
is mainly limited by the second-order binomial approximation shown in Eq. (5). Also shown 
in the figure is that the NMSE of the proposed algorithm decreases rapidly with the CSPR at a 
rate of −20 dB/decade. This is because the accuracy of the second-order binomial 
approximation is improved inversely proportional to the square of carrier magnitude [see Eq. 
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(5)]. Therefore, the NMSE of Eq. (9) becomes lower than −28 dB when the CSPR of the 
detected signal is larger than 10 dB. According to the previously reported results, the typical 
values of CSPR for the best BER performance range from 6 to 14 dB [5]- [9]. The error 
analysis results depicted in Fig. 5 show that the NMSE of our proposed algorithm would be in 
the range of −20 to −36 dB for those CSPR values. This implies that our proposed algorithm 
would cause merely 1% mean squared error in the estimation of the actual waveform even 
when the CSPR of the signal is as low as 6 dB. 

 

Fig. 5. The normalized mean square error between the original and approximated waveforms. 
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Fig. 6. Effect of the sampling rate on the performance of the proposed algorithm. The 
sensitivity penalty is measured with respect to the conventional KK algorithm operating at 6 
SPSs. 

4.2 Impact of the sampling rate on the performance of the proposed algorithm 

Our proposed algorithm avoids the use of logarithm and exponential functions, but it retains 
some nonlinear functions such as square root and square. Thus, the performance of the 
proposed algorithm could be improved as we increase the sampling rate since these nonlinear 
functions also broaden the spectrum. To investigate the impact of the digital upsampling on 
the performance of the proposed algorithm, we utilize the experimental data described in 
Section 3. In this case, we insert the digital upsampling and downsampling blocks in the 
beginning and end of our proposed algorithm, respectively, and then measure the receiver 
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sensitivity. Figure 6 shows the sensitivity penalty (with respect to the conventional algorithm 
operating at SPS = 6) as a function of SPS. The CSPR of the signal is 10 dB. The results show 
that the receiver sensitivity is improved as we increase the sampling rate. For example, the 
sensitivity penalty after 80-km transmission is reduced by 0.2 dB when the SPS is increased 
from 2 to 3. However, the penalty levels off when we further increase the sampling rate. For 
example, at 6 SPSs, the sensitivity penalties with respect to the conventional algorithm are 
measured to be 0.02 and 0.15 dB after 0- and 80-km transmissions, respectively. These 
penalties should be ascribed to the approximations of the proposed algorithm. Nonetheless, 
the proposed algorithm is capable of performing similar to the conventional one even though 
it requires fewer samples per symbol. 

5. Conclusions 

We have proposed a non-iterative DSP algorithm for KK receiver operable without digital 
upsampling. We adopt a couple of mathematical approximations about the nonlinear 
functions required in the conventional KK algorithm. Thus, it is possible to run this algorithm 
at 2 samples per symbol without incurring significant performance degradation in comparison 
with the conventional algorithm. The experimental verification performed with 112-Gb/s 
SSB-OFDM signal shows that our proposed algorithm operating at 2 samples per symbol 
exhibits merely 0.2 and 0.4-dB sensitivity penalties with respect to the conventional one 
operating at 6 samples per symbol after transmissions over 0- and 80-km long SSMF, 
respectively. We have also carried out the error analysis to evaluate the performance of the 
proposed algorithm. The results confirm that the proposed algorithm (operating at 2 samples 
per symbol) has the same performance as the conventional one (operating at 6 samples per 
symbol) as the CSPR and the sampling rate increases. Nevertheless, the proposed DSP 
algorithm for KK receiver is capable of recovering the electric field of the directly-detected 
signal accurately even when the CSPR is as low as 6 dB and it runs at 2 samples per symbol. 
Thus, we believe that the proposed DSP algorithm could be used to implement the real-time 
KK receiver cost-effectively. 
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