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Abstract
Introduction: Cognitive performance in patients with Alzheimer’s dementia (AD) and 
mild cognitive impairment (MCI) has been reported to be related to hippocampal atro-
phy and microstructural changes in white matter (WM). We aimed to predict the neu-
rocognitive functions of patients with MCI or AD using hippocampal volumes and 
diffusion tensor imaging (DTI) metrics via partial least squares regression (PLSR).
Methods: A total of 148 elderly female subjects were included: AD (n = 49), MCI 
(n = 66), and healthy controls (n = 33). Twenty-four hippocampal subfield volumes and 
the average values for fractional anisotropy (FA) and mean diffusivity (MD) of 48 WM 
tracts were used as predictors, CERAD-K total scores, scores of CERAD-K 7 cognitive 
subdomains and K-GDS were used as dependent variables in PLSR.
Results: Regarding MCI patients, DTI metrics such as the MD values of the left retro-
lenticular part of the internal capsule and left fornix (cres)/stria terminalis were signifi-
cant predictors, while hippocampal subfield volumes, like the left CA1 and hippocampal 
tail, were main contributors to cognitive function in AD patients, although global 
FA/MD values were also strong predictors. The 10-fold cross-validation and stricter 
300-iteration tests proved that global cognition measured by the CERAD-K total 
scores and the scores of several CERAD-K subdomains can be reliably predicted using 
the PLSR models.
Conclusions: Our findings indicate different structural contributions to cognitive func-
tion in MCI and AD patients, implying that diffuse WM microstructural changes may 
precede hippocampal atrophy during the AD neurodegenerative process.
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1  | INTRODUCTION

Alzheimer’s dementia (AD) usually progresses slowly for a decade or 
more before a diagnosis of dementia, and a mild cognitive impairment 
(MCI) is proposed to capture the prodromal stages of various etiol-
ogies of dementia, including AD. To date, molecular, functional, and 
structural biomarkers have been developed to accurately diagnose AD 
(Ishii, 2014) and to predict conversion from MCI to AD at an early 
time (Forlenza, Diniz, Teixeira, Stella, & Gattaz, 2013). Among these 
biomarkers, structural MRI is indispensable, and atrophy of the medial 
temporal lobe including the hippocampus is considered as a valid di-
agnostic marker (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010) and 
as a risk factor of conversion to AD (Grundman et al., 2002). A link be-
tween the hippocampal volume and cognitive function, such as verbal 
memory and language, has been reported in AD, amnestic MCI, and 
the normal elderly population (Chetelat et al., 2003; Petersen et al., 
2000), and hippocampal atrophy is generally accepted as being cor-
related with cognitive performance in AD.

Compared to hippocampal atrophy, white matter (WM) alter-
ations have not received much attention until recently, since cog-
nitive performance has been considered to be associated with gray 
matter atrophy rather than with WM alterations (Grundman et al., 
2002; Loewenstein et al., 2009). However, a recent meta-analysis 
of diffusion tensor imaging (DTI) revealed that microstructural alter-
ations in WM in MCI and AD are widespread throughout the brain 
(Sexton, Kalu, Filippini, Mackay, & Ebmeier, 2011), particularly in 
limbic fibers connected directly to the medial temporal lobe (Salat 
et al., 2010). Subtle impairments in nonmemory performance in MCI 
patients are postulated to be mainly related to pathology outside 
the hippocampus (Grundman et al., 2003), and disruption of para-
hippocampal WM fibers contributes to memory decline by partially 
disconnecting the hippocampus from incoming sensory information 
(Stoub et al., 2006).

Two main diffusion metrics are generally calculated from DTI data: 
fractional anisotropy (FA) and mean diffusivity (MD). FA and MD mea-
sure the directional dominance and overall degree of water diffusion 
in tissue, respectively. FA is generally interpreted as reflecting the den-
sity of nerve fibers and their myelin sheaths (Beaulieu, 2002), while 
MD reflects the breakdown of tissue cytoarchitecture and demyelin-
ating process (Le Bihan & Johansen-Berg, 2012). Aging and WM neu-
ropathology often result in a decrease in anisotropy, and age-related 
FA decline is correlated with slower responses in the visual task (Lebel 
et al., 2012; Madden et al., 2004).

In the hypothetical model of dynamic biomarkers related to the 
AD pathological cascade, the production of soluble amyloid beta (Aβ) 
oligomers, which can directly injure WM integrity (Lee et al., 2004; 
Roth, Ramirez, Alarcon, & Von Bernhardi, 2005), happens first, and 
neurodegenerative biomarkers such as cerebral atrophy, synaptic 
dysfunction, and cognitive symptoms are manifested later (Jack et al., 
2010). According to the neurovascular hypothesis of AD, vascular-
derived insults are considered to initiate neuronal degeneration. That 
is, cerebral hypoxia and blood–brain barrier leakage, caused by the 
vascular risk factors lead to the accumulation of neurotoxic molecules 

and WM micro-injury (Zlokovic, 2011). Vascular injury also hampers 
the normal clearance of Aβ, leading to the accelerated accumulation 
of Aβ. Therefore, microstructural changes in WM can be a good bio-
marker for both early diagnosis of AD and to monitor disease progres-
sion (Oishi & Lyketsos, 2016).

Several researches have reported that DTI metrics are associated 
with several domains of cognitive function in patients with MCI or 
AD. Mielke and colleagues (Mielke et al., 2012) found that fornix FA is 
correlated with cross-sectional memory and predicts memory decline 
in MCI patients. In studies using linear regression analysis, parietal or 
temporal lobe FA values and the mean MD values from cinguli were 
significant predictors for global cognition or episodic memory of am-
nestic MCI and AD (Bozzali et al., 2012; Wang et al., 2013). However, 
above-mentioned studies extracted DTI measures from a priori se-
lected brain areas such as fornix and cinguli, and examined the pre-
dictability using linear regression analysis or multivariate model. In a 
multiple regression model, collinearity, a phenomenon in which two 
or more predictors are highly correlated, can affect the calculations 
for individual predictors and distort the interpretation of a model (Tu, 
Kellett, Clerehugh, & Gilthorpe, 2005; Wold, Ruhe, Wold, & Dunn, 
1984). Unfortunately, variables from neuroimaging data are usually 
quite numerous and are likely to be collinear.

Partial least squares regression (PLSR) combines features from 
and generalizes principal component analysis and multiple linear re-
gression (Abdi, 2010), and it is particularly useful when we need to 
predict a set of dependent variables from numerous, highly collinear 
independent variables or predictors (Tobias, 1995). This prediction is 
achieved by extracting a set of orthogonal factors from the predictors 
(i.e., latent variables, LVs) explaining the covariance between predic-
tors and dependent variables as much as possible with the best pre-
dictive power (Abdi, 2010).

In this study, we aimed to predict neurocognitive functions of pa-
tients with MCI or AD using hippocampal volumes and DTI metrics 
with PLSR. We hypothesized that several variables among hippocam-
pal subfield volumes and DTI metrics, such as FA and MD, might sig-
nificantly contribute to the cognitive functions of both patients, but 
DTI measures might be more predictive for cognitive function in MCI 
patients compared to AD patients since microstructural changes in 
WM were considered to precede hippocampal atrophy.

2  | METHODS

2.1 | Subjects and imaging data

The potential patients were recruited from the Psychiatric Department, 
Korea University Guro Hospital, and control subjects were sought 
from the community population via an advertisement. All subjects 
received a Korean version of the Consortium to Establish a Registry 
for AD Assessment Packet (CERAD-K) (Lee et al., 2002), Korean 
Geriatric Depression Scales (K-GDS) (Bae & Cho, 2004), the Korean 
version of the Clinical Dementia Rating (CDR) scale (Choi et al., 2001). 
The CERAD Neuropsychological Battery (CERAD-NB) was devel-
oped as a reliable, standardized battery to measure primary cognitive 
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manifestations of AD (Morris et al., 1989). The original CERAD-NB 
included five cognitive tests: Verbal Fluency, 15-item Boston Naming 
Test, Mini-Mental State Examination (MMSE), 10-item Word List 
Learning, Recall and Recognition Test, and Constructional Praxis 
and Constructional Recall. The CERAD total score was calculated as 
the sum of the scores of CERAD subdomains except for MMSE and 
Constructional Recall, as previously described (Chandler et al., 2005).

The AD diagnosis was made based on the criteria for probable or 
possible AD, developed by the National Institute of Neurological and 
Communicative Disorders and Stroke and the Alzheimer’s Disease 
and Related Disorders Association (NINCDS-ADRDA)(McKhann 
et al., 1984). Individuals were categorized as MCI based on the cri-
teria proposed by Peterson and colleagues (Petersen et al., 1999). 
Healthy controls (HCs) met the following criteria: a MMSE score 
>−1.5 SD (adjusted for age, sex, and educational years) and no objec-
tive cognitive impairment (all scores of CERAD-K cognitive domains 
>−1.5 SD).

2.2 | MRI image acquisition

All subjects underwent an MRI examination at the Brain Imaging 
Center, Korea University. Multiple diffusion-weighted images, with 
20 encoding directions and an additional T2-weighted scan, were 
acquired twice at a single-scan session using a 3.0-T Siemens Trio 
Tim scanner with a standard single-shot, spin echo, echo planar ac-
quisition sequence with eddy current balanced diffusion weight-
ing gradient pulses to reduce distortion (Reese, Heid, Weisskoff, 
& Wedeen, 2003). The scan parameters were: b = 1000 s/mm2,  
TE/TR = 84 ms/6.3 s; matrix = 128 × 128 on 230 × 230 mm FOV; 
3-mm slices without a gap resulting in voxels of 1.8 × 1.8 × 3.0 mm. 
Four magnitude averages provided sufficient signal-to-noise ratios. 
Volumetric T1-weighted anatomic reference images were acquired 
using a magnetization-prepared rapid gradient echo sequence 
(TE/TR/TI = 2.60 ms/1.9 s/900 ms; 256 × 256 × 176 matrix for 
0.86 × 0.86 × 1 mm voxels).

A total of 60 AD patients, 93 MCI patients, and 48 HCs partici-
pated in the MRI examination, and the gender ratios were as follows: 
(F:M) AD 49:11, MCI 66:27, HCs 33:15. After considering significant 
differences between the genders in the total intracranial volume (ICV) 
(F, 1319 ± 103; M, 1512 ± 110, t-value = −11.51, p < .001) and a rel-
atively small proportion of male subjects (26%), only female subjects 
were included into this study.

2.3 | Image preprocessing: hippocampal 
subfield volumes

Individually, 24 hippocampal subfields were automatically segmented 
on the T1-weighted images using Freesurfer v6.0 (Iglesias et al., 2015), 
which provides volumes for Cornu Ammonis (CA) regions 1, 2 and 3 
combined, and 4 (CA1, CA2/3, and CA4), fimbria, hippocampal fissure, 
presubiculum, subiculum, hippocampal tail, parasubiculum, granule 
cell layer-molecular layer-dentate gyrus (GC-ML-DG), molecular layer, 
and the hippocampus-amygdala-transition-area (HATA).

2.4 | Image preprocessing: DTI metrics

Preprocessing for DTI analysis, including skull stripping and Eddy cur-
rent correction, was performed using the FMRIB Software Library 
(FSL; Oxford, UK; http://www.fmrib.ox.ac.uk/fsl). A diffusion tensor 
model was arranged for each voxel with the generation of FA and 
MD images using FMRIB’s diffusion toolbox in FSL. The Tract-Based 
Spatial Statistics (TBSS) pipeline was used to identify a common reg-
istration target, and all subjects’ FA images were aligned to this tar-
get using nonlinear registration. The aligned FA images were affine 
transformed into 1.0 × 1.0 × 1.0 mm3 Montreal Neurological Institute 
152 space, and a mean FA image was generated from the transformed 
FA images. A mean skeleton image was created from the mean FA 
image, and each of the subject’s aligned FA image was projected onto 
the mean FA skeleton by filling the structure with FA values from the 
nearest relevant tract center. Finally, this skeletonized FA image was 
thresholded using an FA value of 0.2 to reduce intersubject variability 
and to represent each tract as a single line running down the center 
of the tract. The MD images were projected onto the skeleton using 
the transformation matrix produced by processing the FA images. The 
average values for FA and MD were calculated within the TBSS skel-
eton of 48 WM tracts based on the International Consortium of Brain 
Mapping DTI-81 WM labels atlas (Smith et al., 2006).

2.5 | Cognitive function prediction

PLSR modeling was performed using the package “pls” (Mevik, Wehrens, 
& Liland, 2015) in the R program (R Core Team, 2017). Two kinds of 
PLSR model were made for each group, and all models used hippocam-
pal subfield volumes and FA/MD values as predictors. As for dependent 
variables, one used CERAD-K total scores, while the other used scores 
of seven CERAD-K subdomains and K-GDS, simultaneously. All predic-
tors and dependent variables were transformed into z-scores, but they 
were not adjusted to ICV or age since this study’s aim was to test the 
predictability of the hippocampal volumes and DTI metrics per se, prob-
ably containing the information of ICV or age, on cognitive function for 
each group, which is also related with ICV or age (Royle et al., 2013; 
Wolf, Julin, Gertz, Winblad, & Wahlund, 2004). The optimal number 
of LVs was determined based on the mean squared error of prediction 
(MSEP) and the predicted residual estimated sum of squares (PRESS). 
The number of LVs showing the lowest MSEP and PRESS were selected 
in the PLSR using CERAD-K total scores as one dependent variable, 
and in the case of PLSR using multiple dependent variables, the ma-
jority rule was applied, which means that the most common number 
was selected among the numbers of LVs with the lowest MSEP and 
PRESS for each of the dependent variables. For all predictors per group, 
jackknife approximate t-tests of regression coefficients (i.e., jack.test in 
the package “pls”) were performed to identify important predictors that 
are significantly correlated with each of the LVs with regard to each 
of the dependent variables separately. To validate the predictability of 
each group’s PLSR models, a 10-fold cross-validation and linear regres-
sion analysis between observed and predicted scores was conducted. 
Finally, we randomly split data into 2/3 and 1/3 for the training and 

http://www.fmrib.ox.ac.uk/fsl
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test set and predicted the scores of dependent variables with a PLSR 
model using training set and then performed a linear regression analysis 
between the observed and predicted scores for the testing set, which 
was repeated 300 times.

3  | RESULTS

The demographic data and scores on the CERAD-K cognitive test, 
CDR, and K-GDS are presented in Table 1. The AD and MCI groups 
are significantly older than the HCs, and AD patients were less edu-
cated compared to the HCs. Naturally, the three groups differed from 
each other in the scores for the CDR and CERAD-K cognitive test 
except for the constructional praxis scores, for which the AD group 
only differed significantly from the MCI and HC groups.

Figure S1 shows the MSEP of the three groups’ PSLR models 
using CERAD-K total scores as a dependent variable, respectively. 
According to these plots, the optimal numbers of LVs were 1, 1, and 
4 for the AD, MCI, and HC groups, respectively. In the case of the 
PLSR models using scores of CERAD-K 7 subdomains and K-GDS as 
dependent variables, the optimal numbers of LVs were all 1 for all 
three groups. For the AD, MCI, and HC groups, the selected LV num-
ber(s) explained 59.7%, 43.2%, and 94.0% of the variance for the 
CERAD-K total scores, respectively. For the other dependent vari-
ables and predictors, the relevant information is presented in Table 
S1. As a whole, the CERAD-K total score was the highest explained 
dependent variable, and the MMSE score was the second-highest 
explained variable, whereas the K-GDS score was the least-explained 
variable.

Table 2 shows the most important hippocampal subfields and 
fiber tracts that are significantly (p < .005) correlated with the LV(s) 
with regard to the CERAD-K total scores of each group. As shown 
in Table 2, the volumes of the hippocampal subfields, including CA1, 
CA2/3, CA4, molecular layer, subiculum, parasubiculum, hippocampal 
fissure, hippocampal tail, and GC-ML-DG, were significant predictors, 
although the global FA/MD values, (i.e., average of all regional FA/MD  
values) and several FA/MD values of regional fiber tracts, such as 
the anterior corona radiata, were also important predictors related to 
CERAD-K total scores in the AD patients. In contrast with the AD pa-
tients, the FA/MD values were only significant contributors to the se-
lected LV(s) in MCI patients and healthy controls. As shown in Figure 1, 
the important fiber tracts of the MCI patients were anterior/posterior 
limb and retrolenticular part of the internal capsule, genu of the cor-
pus callosum, fornix (cres)/stria terminalis, sagittal stratum, posterior 
corona radiata, superior fronto-occipital fasciculus (SFOF), etc., while 
important fiber tracts of healthy controls were cerebral peduncle, genu 
of corpus callosum, etc. Similar to the CERAD-K total scores, the hip-
pocampal subfield volumes were the main predictors of the scores for 
the CERAD-K subdomains, including MMSE, Word list memory, Verbal 
fluency, etc. in AD patients (See Table S2), while the FA/MD values 
were main predictors for the scores of the CERAD-K subdomains in 
MCI patients and healthy controls (See Tables S3 and S4). There was 
no significant predictor for the K-GDS scores.

As shown in Figure 2, the PLSR model of patients with AD or MCI 
significantly predicted the CERAD-K total scores in 10-fold cross-
validation (AD: R2 = .47, coefficient = .50, t-value = 6.08, p = 3.32E-
07; MCI: R2 = .30, coefficient = .35, t-value = 5.29, p = 1.60E-06), 
while the PLSR model of the HCs did not predict the CERAD-K total 

AD (n = 49) MCI (n = 66) HC (n = 33) F-statistic p-value

Age 77.9 ± 6.3a 74.8 ± 6.9a 68.9 ± 7.4 17.01 <.001

Education years 3.9 ± 4.0a 5.5 ± 4.6 6.7 ± 5.2 3.91 .022

CDR 1.2 ± 0.8a,b 0.6 ± 0.3a 0.4 ± 0.4 24.88c <.001

K-GDS 13.4 ± 7.1 14.0 ± 7.2 14.5 ± 7.0 0.23 .795

CERAD-K cognitive tests

Total scores 28.7 ± 12.6a,b 42.5 ± 10.7a 64.7 ± 11.8 86.17

<.001

MMSE 13.7 ± 5.6a,b 19.9 ± 5.0a 24.4 ± 4.2 45.55

Constructional praxis 6.4 ± 2.5a 7.9 ± 2.6 9.1 ± 1.7 11.71

Word list memory 6.2 ± 4.4a,b 9.6 ± 3.6a 16.7 ± 4.3 63.07

Word list recall 0.5 ± 1.0a,b 1.7 ± 1.8a 5.7 ± 1.9 98.57c

Word list recognition 3.1 ± 3.0a,b 5.2 ± 2.9a 9.2 ± 1.0 106.65c

Verbal fluency 6.7 ± 4.0a,b 10.0 ± 3.3a 13.9 ± 3.8 36.28

Boston naming test 5.6 ± 2.9a,b 8.1 ± 2.9a 11.1 ± 2.5 34.46

AD, Alzheimer’s dementia; K-GDS, Korean Geriatric Depression Scales; MCI, Mild cognitive impair-
ment; HC, Healthy control; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination.
As for the scores of CERAD-K cognitive test and K-GDS, complete data were available for 38 AD pa-
tients, 64 MCI patients, and 30 HCs, and one or more data were not available for the remaining 
subjects.
aIndicates significance compared to HC group (p < .05).
bIndicates significance compared to MCI group (p < .05).
cWelch’s ANOVA with Games-Howell post hoc test. Otherwise, ANOVA with Tukey’s post hoc test.

TABLE  1 Demographic and clinical 
characteristics of participants
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scores (R2 = .12, coefficient = .22, t-value = 1.98, p = .057). In addition 
to the CERAD-K total scores, the scores of five or six CERAD-K sub-
domains, such as MMSE, Word list memory, Verbal fluency etc., can 
also be predicted using the PLSR model of patients with AD or MCI, 
respectively (for more information, see Table S5).

Finally, a total of 300 iterations of the linear regression between 
the predicted and observed values from the PLSR models, using 2/3 
for training and 1/3 as a test set, exhibited that only CERAD-K total 
scores and Verbal fluency can be significantly predicted using the 
PLSR models in patients with AD (CERAD-K total scores: R2 = .51, 

TABLE  2 Hippocampal subfields and fiber tracts that are significantly (p < .005) correlated with the latent variable(s) with regard to 
CERAD-K total scores in three groups

Alzheimer’s disease reg.coef. t-value p-value Mild cognitive impairment reg.coef. t-value p-value

Hippocampal subfields FA

CA1 (L) .0221 5.31 .0005 Anterior limb of internal capsule 
(L)

.0189 5.93 .0002

Hippocampal tail (L) .0149 4.85 .0009 Genu of corpus callosum .0176 4.86 .0009

Whole hippocampus (L) .0228 4.66 .0012 SFOF (R) .0203 4.82 .0009

CA1 (R) .0216 4.57 .0013 Retrolenticular part of internal 
capsule (L)

.0136 4.42 .0017

Molecular layer (L) .0233 4.41 .0017 Fornix (cres)/stria terminalis (R) .0156 4.40 .0017

Whole hippocampus (R) .0212 4.40 .0017 Anterior limb of internal  
capsule (R)

.0194 3.95 .0033

Subiculum (R) .0222 4.35 .0019 MD

Molecular layer (R) .0219 4.30 .0020 Retrolenticular part of internal 
capsule (L)

−.0177 −6.62 .0001

GC-ML-DG (L) .0217 4.08 .0027 Fornix (cres)/stria terminalis (L) −.0251 −6.35 .0001

CA4 (L) .0218 4.08 .0028 Sagittal stratum (L) −.0175 −6.14 .0002

CA2/3 (L) .0198 3.94 .0034 Posterior corona radiata (R) −.0220 −5.84 .0002

Hippocampal.fissure (R) .0207 3.86 .0038 Anterior limb of internal  
capsule (L)

−.0195 −5.47 .0004

Parasubiculum (L) .0184 3.70 .0049 Posterior limb of internal 
capsule (R)

−.0149 −5.10 .0006

FA Fornix (cres)/stria terminalis (R) −.0228 −4.48 .0015

FA global .0132 4.95 .0008 Anterior corona radiata (R) −.0202 −4.35 .0018

Anterior corona radiata (L) .0187 4.36 .0018 Genu of corpus callosum −.0204 −4.35 .0018

Genu of corpus callosum .0177 4.25 .0021 Superior corona radiata (R) −.0172 −4.23 .0022

Posterior corona radiata (R) .0134 3.85 .0039 Posterior limb of internal 
capsule (L)

−.0186 −4.20 .0023

MD Retrolenticular part of internal 
capsule (R)

−.0160 −4.14 .0025

MD global −.0191 −4.32 .0019 Sagittal stratum (R) −.0242 −3.87 .0038

Fornix (cres)/stria  
terminalis (L)

−.0185 −4.23 .0022 Body of corpus callosum −.0162 −3.86 .0038

Anterior corona radiata (R) −.0192 −3.96 .0033 Posterior corona radiata (L) −.0180 −3.86 .0039

Cingulum  
(cingulate gyrus) (R)

−.0199 −3.84 .0039 Anterior limb of internal  
capsule (R)

−.0181 −3.81 .0041

Healthy controls MD

FA Genu of corpus callosum1 −.0178 −3.98 .0032

Cerebral peduncle (L)2 −.0730 −4.14 .0025 Anterior corona radiata (L)1 −.0146 −3.86 .0039

Cerebral_peduncle (L)3 −.0702 −3.91 .0036 Retrolenticular part of internal 
capsule (L)1

−.0203 −3.79 .0043

CA, Cornu Ammonis; FA, fractional anisotropy; MD, mean diffusivity; GC-ML-DG, granule cell layer-molecular layer-dentate gyrus; SFOF, superior fronto-
occipital fasciculus.
Superscripts in healthy controls indicate 1st to 3rd latent variables.
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coefficient = 1.09, t-value = 3.74, p = .018; Verbal fluency: R2 = .41, 
coefficient = 1.26, t-value = 3.07, p = .046). The same iterative test-
ing also revealed that the CERAD-K total scores of the MCI patients 
can be predicted from the PLSR models of the MCI patients (R2 = .38, 
coefficient = 1.02, t-value = 3.58, p = .025), and that no dependent 
variables can be predicted from the PLSR models in the HCs (for more 
information, see Table S6).

4  | DISCUSSION

In this study, we found that cognitive function of MCI and AD pa-
tients can be predicted using PLSR models in which the predictors are 
the hippocampal subfield volumes and DTI metrics (FA/MD). As for 

the MCI patients, DTI metrics were mostly significant predictors of 
cognitive function, whereas hippocampal subfield volumes were the 
main contributors to cognitive function in AD patients, although global 
FA/MD values were also significant predictors. The 10-fold cross-
validation of the PLSR models of patients with AD or MCI showed that 
CERAD-K total scores and scores of the several CERAD-K subdomains 
can be significantly predicted, and further, stricter 300 iterative tests 
clearly proved that the global cognition measured by the CERAD-K 
total scores can be reliably predicted using PLSR models with hip-
pocampal volumes and DTI metrics in patients with AD or MCI.

As for the cognitive impairment of AD, Bozzali and colleagues 
(Bozzali et al., 2012) suggested that brain deafferentation through the 
cingulum is likely to play a remarkable role. In this hypothesis, neuro-
nal loss of the medial temporal lobe at early stages of AD may lead to 

F IGURE  1 Significant fiber tracts obtained by thresholding p-values <0.005 to the coefficients of three groups’ PLSR models using CERAD-K 
total scores as dependent variables

F IGURE  2 Predicted versus measured CERAD-K total scores of three groups. Predicted values are obtained by 10-fold cross-validation in 
each PLSR model
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axonal loss, and then deafferentation of other brain regions, where 
these axons project, is considered to contribute to the cognitive dis-
abilities in AD. On the other hand, the myelin model of the human 
brain proposed by Bartzokis (Bartzokis, 2011) considers AD as homeo-
static responses to age-related myelin breakdown, and a key protein of 
AD (i.e., Aβ and tau) is a byproduct of the myelin repair process rather 
than the primary cause of AD. In this model, the spread pattern of the 
AD lesion “recapitulates the myelination pattern in reverse” (Braak & 
Braak, 1996), that is, later-myelinated neocortical projection fibers are 
affected first, while early-myelinated large-diameter from motor and 
sensory areas are affected least and last (Bartzokis, Lu, & Mintz, 2007) 
since the myelin sheaths are structurally more vulnerable when they 
are produced later during brain development (Amlien & Fjell, 2014).

Our findings imply that the myelin breakdown model is more plau-
sible for pre- or early AD pathogenesis than the brain deafferentation 
model, since cognitive impairment of the MCI patients is predicted 
by the DTI metrics of cortico-cortical association fibers like corpus 
callosum and corona radiata, while the brain deafferentation model 
is more readily explainable for cognitive impairment of late-stage AD 
since AD patients’ cognitive disabilities are mainly influenced by hip-
pocampal atrophy, MD of the cingulum, and so on. WM microscopic 
changes may occur before neuronal degradation and atrophy can be 
detectable on a macroscopic level (Muller et al., 2005). Accordingly, 
as other researchers have contended, DTI might be a more sensitive 
and quantifiable tool for early detection of AD than conventional MRI 
techniques (Neil, Miller, Mukherjee, & Huppi, 2002; Sun et al., 2005).

Our findings indicate that higher FA and lower MD values pre-
dicted higher cognitive functions in MCI or AD patients, and these 
are in agreement with previous studies reporting a significant asso-
ciation between decreased MMSE and reduced FA (Bai et al., 2009) 
or increased MD (Muller et al., 2007), either within or across groups. 
A recent meta-analysis (Sexton et al., 2011) revealed that impaired 
global cognitive functions of AD patients were associated with an 
absolute effect size for FA in the parietal region while those of MCI 
patients were associated with an absolute effect size of FA in the 
frontotemporal and parietal regions and MD in the frontal region and 
corpus callosum. These findings suggest that in pre-AD stages, diffuse 
WM alterations are more involved in cognitive functions than in AD 
stages, which is consistent with our results. It is plausible that myelin 
breakdown may result in a slow progression of the disruption in neural 
transmissions, which leads to the degradation of temporal synchrony 
in widely distributed neural networks. Such impaired synchronization 
of large-scale neural networks may impair higher cognitive functions, 
including memory (Bartzokis, 2004).

In our study, the FA or MD value of the genu of corpus callosum 
was a significant predictor for global cognition in all three groups and 
for Word list memory in MCI patients, and the MD value of the body 
of corpus callosum was a significant predictor for global cognition in 
MCI patients. Atrophies and FA/MD changes in the anterior (genu) 
and the posterior (splenium) subregions of corpus callosum are widely 
accepted in AD (Sexton et al., 2011), and these alterations are sug-
gested to be present in the early stages of AD (Di Paola, Spalletta, 
& Caltagirone, 2010). The genu receives axons directly from the 

prefrontal cortex and myelinates later than the splenium, which re-
ceives axons from temporo-parietal regions that typically exhibit at-
rophy and hypometabolism in the AD (Ishii, 2014). Our findings that 
fiber tracts located in not the splenium but the genu predicted cog-
nitive functions for MCI patients imply that the myelin breakdown 
model is more plausible than the Wallerian degeneration model in the 
early stage of AD pathogenesis.

Burgess and colleagues (Burgess, Maguire, & O’Keefe, 2002) men-
tioned that the right or left hippocampus has a different role according 
to the type of memory. For example, the right hippocampus is particu-
larly involved in visuo-spatial memory, with the left hippocampus more 
involved in episodic or autobiographical memory (Burgess et al., 2002). In 
our study, verbal memory and fluency are also largely predicted by the vol-
ume of the left hippocampal subfields, and this is compatible with a previ-
ous study reporting a significant association between the shrinkage of the 
left hippocampus and impaired verbal memory of AD (Laakso et al., 1995).

Meanwhile, a meta-analysis of the relationship between memory 
performance and hippocampal volumes showed little evidence for the 
bigger-is-better hypothesis in older adults (Van Petten, 2004). In this 
analysis, studies showed extreme variability in the relationship between 
hippocampal size and episodic memory in older adults. However, in 
the case in which hippocampal atrophy becomes obvious with marked 
cognitive disabilities as AD progresses, the hippocampal volume itself 
seems to be an important biomarker to predict the degree of cognitive 
dysfunction, as our study implied. In our study, the CA1 volume was an 
important predictor of global cognition of AD patients. CA1 is known 
to be the first hippocampal area affected by neurofibrillary tangles, 
and it shows a maximal volume decrease (about 27%) in AD patients 
(La Joie et al., 2013; Schonheit, Zarski, & Ohm, 2004). Since CA1 and 
subiculum are the hippocampal subfields that show highly significant 
atrophy and neuronal loss in AD (West, Coleman, Flood, & Troncoso, 
1994), follow-up volumetry of these subfields will be useful to predict 
progression for MCI patients.

4.1 | Limitations

There are several limitations of our study. First, a significant portion of 
the participants exhibited depressive symptoms since we did not ex-
clude participants based on their K-GDS scores. In one meta-analysis 
of depression, patients exhibited about 8–10% reduced hippocampal 
volumes (Videbech & Ravnkilde, 2004). Thus, it is possible that the 
depressive symptoms of the subjects may affect the hippocampal vol-
umes and general cognitive functions. However, depression is very 
common, and 30–40% of patients with AD or MCI have comorbid 
depression (Chi et al., 2015; Ismail et al., 2015). Therefore, our pre-
diction model has a strength in that it can be generalized to a clinical 
situation. Second, predictor variables were not corrected by ICV or 
age, thus the whole brain volume as well as hippocampal atrophy and 
age-related WM alterations may have influenced the evaluation of the 
importance of predictors. Third, only female subjects were included 
in our analysis, which limits the generalizability of our findings. Last 
but not least, a substantial portion of the patients with MCI will not 
progress to AD, so DTI metrics-cognition associations in MCI patients 
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should not be interpreted as equal to findings of prodromal AD, which 
warrants further longitudinal follow-up research.

5  | CONCLUSION

Our findings show different structural contributions to cognitive func-
tion between MCI and AD patients and imply that diffuse microstruc-
tural changes in WM may precede hippocampal atrophy during AD 
neurodegenerative processes. Our study also clearly showed that the 
cognitive function of MCI and AD patients can be predicted using hip-
pocampal subfield volumetry and DTI metrics. In the future, a more 
objective evaluation will be possible on cognitive function and disease 
progression in patients with MCI or AD.
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