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Abstract — With the aim of achieving the best possible 

speaker identification rate in a distant-talking environment, 
we developed a multiple microphone-based text-independent 
speaker identification system using soft channel selection. The 
system selects and combines the identification results based on 
the reliability of an individual channel result using a single 
perceptron. Thus, it allows for user-customized service with 
high identification accuracy in home robot environments. 
From the experimental results, it is shown that the proposed 
system is effective in a distant-talking environment, thereby 
providing a speech interface for a wide range of potential 
hands-free applications in a ubiquitous environment. 1 
 

Index Terms — Human robot interaction, hypothesis 
combination, speaker identification, speaker recognition, 
multiple microphones.  

I. INTRODUCTION 
Speaker identification is the task of determining which 

enrolled speaker has provided a given utterance among a set of 
known users. This technique makes it possible to use a 
speaker’s voice to control access to services such as voice 
dialing, data access services, and information retrieval services. 
This capability is effective for robot applications where multiple 
users share the same access privileges to some application, but 
where the individual speaker must be uniquely identified from a 
group in order to provide the user with a customized service 
depending on his/her preference. Therefore, speaker 
identification technology is expected to create various useful 
services that will make our daily lives more convenient.  

The ultimate goal of speaker identification systems is to 
achieve the best possible identification performance at hand. 
Current state-of-the-art speaker identification systems have 
achieved high identification accuracy. And they are known to 
perform reasonably well when the speech signals are captured 
in noise-free environments using close-talking microphones 
worn near the speaker’s mouth. However, even if one of the 
current technologies yield a best performance, its identification 
rate could be abruptly degraded due to a variety of causes such 
as the distance between the speaker and the microphone, the 
location of the microphone and/or noise, and the direction of the 
speaker in adverse distant-talking environments where the 
speaker is at a distance from the microphones.  
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To deal with such a problem, microphone array-based 
speaker identification technologies have been successfully 
applied to improve the identification rate through speech 
enhancement by combining the speech signals from the 
microphones in order to increase their SNR [1], [2]. However, 
an accurate estimation of the time delays between different 
speech signals is still not an easy task due to room 
reverberation, background noise, the non-stationary 
characteristics of the speech signal, etc. Among those causes, 
generally, room reverberation is considered to be the main 
problem for time delay estimation, but adverse noisy 
environments can also considerably decrease the performance 
of a time delay. Even though array processing technologies 
effectively improve the SNR of the resulting signal, these 
improvements are not directly translated into substantial gains 
in classification problems. It is assumed that the best array 
processing will result in the best performance. However, the 
speaker identification system does not interpret the waveform 
itself; rather the feature is extracted from the speech waveform. 
Whereas this is certainly appropriate if the speech signal is to 
be interpreted by a human listener, it may not necessarily be 
the right criteria if the signal is to be interpreted by the speaker 
identification system. A microphone array is any number of 
microphones operating in tandem. Typically, arrays are 
formed using numbers of closely spaced microphones. And 
there exists a restriction with a fixed physical relationship in 
space between the different individual microphone array 
elements. In addition, there has been another approach based 
on feature compensation for robust speaker identification in a 
multi-microphone environment [3]. 

The variety of causes that exist in a distant-talking 
environment can have different effects on an individual 
channel. Thus, speaker identification errors misclassified by 
different speech inputs are not always the same. This suggests 
that the composite output could potentially have a lower error 
rate than any of the individual outputs. Therefore, we propose 
a multiple microphone-based speaker identification method 
that merges the identification results obtained from multiple 
microphones using soft channel selection. No restrictions with 
respect to space between separate microphones are imposed.  
To recognize a user’s identity exactly is very important in 
providing a user with a customized service in a robot 
environment, thereby enhancing the quality of human and 
robot interaction.   

The remainder of this paper is organized as follows. In 
Section II, we review the conventional multiple microphone-
based speaker identification methods based on the classical 
Gaussian mixture models [4], [5], and we describe a new 
multiple microphone-based speaker identification method in 
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Section III. Section IV illustrates the experimental results.  
Finally, we draw our conclusions in Section V. 
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Fig. 1. Diagram of integrating the identification results in multiple 
microphone-based speaker identification.  

 

II. COMBINING SPEAKER IDENTIFICATION RESULTS 
In multiple microphone-based speaker identification, the 

process of integrating the identification results obtained by 
multiple microphones is illustrated into a block diagram, as 
shown in Fig. 1. Given different speech inputs X1, X2, …, XC 
simultaneously recorded through C multiple microphones, the 
speaker who provides given test utterances X1, X2, …, XC 
among a set of known speakers S = {1, 2, …, S} is generally 
identified by (1). Each enrolled speaker is modeled 
individually by Gaussian mixture model (GMM) λ1, λ2, …, λS. 
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Depending on the assumptions made, (1) can be rewritten as 

one of the following combination rules, CS (combination by 
sum), CM (combination by max), or CV (combination by 
majority vote) as in (2), (3) and (4), respectively [6]. 
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2) Combination by max (CM) 
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3) Combination by majority vote (CV) 
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where Δks is further defined by 
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III. PROPOSED SPEAKER IDENTIFICATION WITH MULTIPLE 
MICROPHONES 

A. Frame’s Entropy by Posterior Probabilities  
In probability or information theory, the entropy H(Y) of a 

discrete random variable Y = {y1, y2, …, yN} introduced by 
Shannon is defined as: 
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where P(yi) = Pr(Y = yi), P(yi) ≥ 0, and ∑i P(yi) = 1. If all the 
outcomes are equally likely to be (P(yi) = 1/N), then the 
entropy should be maximal. For all N, therefore, it follows that 
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The entropy should be unchanged even if the outcomes yi are 
re-ordered as 
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In this work, entropy is used to measure the degree of a 

frame’s contribution to speaker identification. Let us assume 
that there exist S enrolled speakers, and the prior probabilities 
for all the speakers are equal (P(λk) = 1/S). Then, the posterior 
probability of speaker k at frame t is given as follows: 
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The posterior probability of speaker k in (9) represents the 

accuracy of speaker model λk producing an observation xt. 
Thus, if the values of the posterior probabilities are similar, it 
is reasonably concluded that frame t does not really affect the 
identification. Reversely, if the posterior probability for one 
speaker is relatively higher than the others, it is reasonable to 
infer that frame t does affect the identification result. Then, the 
frame’s entropy is defined by 
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where ptk = P(λk | xt) ≥ 0, ∑S 
k=1 ptk = 1, and Pt = {pt1, pt2, …, ptS} 

is a set of posterior probabilities for all enrolled speakers. The 
frame’s entropy in (10) should be maximal if the posterior 
probabilities are equal for all speakers k (ptk = 1/S) in the same 
manner as (7).  

In order to examine if the frame’s entropy is actually related 
to identification success, the entropy is computed frame by 
frame. The distribution of the frame’s entropy is shown in Figs. 
2 and 3, which are divided into two cases, respectively: when 
the true speaker is correctly identified, and when a false 
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speaker is incorrectly identified, each under the entire 
observation sequence X={x1, x2, …, xT}. In both cases, we 
categorize each frame into one of two groups depending on 
whether the best hypothesis is recognized on that frame or not. 
As shown in the figures, the frames on which the best 
hypothesis is recognized are considerably more distributed 
over a low entropy value in the case of identification success 
than in the case of identification failure. Accordingly, this 
implies that the frame’s entropy affects identification success 
or failure. 
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Fig. 2. Distribution of the frame’s entropy where the true speaker is 
correctly identified (identification success).  
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Fig. 3. Distribution of the frame’s entropy where a false speaker is 
incorrectly identified (identification failure).  
 

B. Measuring the Degree of Confidence in an Identification 
Result based on a Frame’s Entropy 
A procedure to measure the degree of confidence in an 

identification result is proposed based on a frame’s entropy as 
previously introduced. First of all, the best hypothesis sh1 is 
determined by identifying the entire observation sequence X = 
{x1, x2, …, xT}. Second, the feature components of X are re-
sorted with their entropies in ascending order. Then, the 
accumulated log-likelihoods of all enrolled speakers are 
computed in the order of the re-arranged observations frame 
by frame. At every frame, the speaker with the maximum 
accumulated log-likelihood s(t) is compared with the best 
hypothesis sh1. As a result, the confidence in identification 
result sh1 is determined by how long the accumulated log-
likelihood of speaker sh1 is successively the maximum among 

those enrolled speakers right before speaker sh1 is finally 
confirmed as the output. Thus, we propose a feature called 
identified speaker’s continuity (ISC), which represents the 
confidence in the identified speaker. The pseudo code for this 
is described in detail in Fig. 5.  

 

 
Fig. 4. Re-arranged observations with their entropies in ascending order. 
 

 
Fig. 5. Pseudo code for identified speaker’s continuity (ISC). 

 
C. Soft Channel Selection by Perceptron 
By selecting only reliable channels among multiple 

channels, and by then combining the identification results 
obtained from them, the accuracy of speaker identification can 
be improved upon even further. As shown in Fig. 6, a single 
perceptron learned by a gradient descent algorithm is used for 
soft channel selection, which gives weight to the individual 
identification result. The reliability of each channel is selected 
by the output of the two-input perceptron, and this reliability is 
applied as weight before integrating the identification results 
by all channels. The ISC and voting rate [7], both of which 
represent the degree of confidence in the identified result and 
range from 0 to 1, are used as the two inputs to the perceptron.  
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Fig. 6. A single perceptron used for soft channel selection. 
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The reliability selected by the perceptron is used as weight 
wc to the identified result obtained by identifying each channel 
input Xc. In the end, the conventional combination rules after 
the application of soft channel selection are modified as   

 
1) CS after the application of soft channel selection 
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2) CM after the application of soft channel selection 
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3) CS after the application of soft channel selection 
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IV. EXPERIMENT 

A. Experimental Setup  
In order to achieve the best possible speaker identification 

performance in distant-talking environments, a proposed 
multiple microphone-based speaker identification is evaluated 
using a database recorded by 30 speakers (23 males and 7 
females) in the same environment as shown in Fig. 7. Nearly 
60 conversational sentences per speaker, with short lengths of 
about one to two seconds each, were recorded in a quiet 
environment. Then, each sentence was re-recorded again into 
multiple microphones on a robot simultaneously by playing 
the original recording back on a loudspeaker placed at center 
(0°) or diagonal (45°) with distances of 1m, 2m, 3m, or 5m 
facing a robot (mock-up) in a home environment, as shown in 
Fig. 7. Among the recordings, 30 different sentences per 
speaker, each of which was recorded only at center and 
diagonal with a 1m distance by eight microphones on the 
robot simultaneously, were used to train an enrolled speaker 
model λk, whereas the rest of them were used for performance 
evaluation. Eight low-cost omni-directional microphones 
distributed on the robot were employed to collect the database, 
with the speech signals sampled at 16 kHz, and 12 Mel-
frequency cepstral coefficients and their corresponding delta 
coefficients were used as the features. Each enrolled speaker 
was modeled by an 80 component GMM using the 
expectation-maximization algorithm [8]. Every utterance was 
pre-emphasized with a factor of 0.97, and a 20 ms Hamming 
window was applied with 10 ms overlapping. 

 

 
Fig. 7. Distant-talking multi-microphone environment. 

 

B. Experimental Results  
The accuracy of speaker identification is generally 

measured by the identification rate. For performance 
comparison, the conventional combination rules illustrated in 
Section II are employed to integrate the identification results 
obtained by separate microphones distributed on the robot in 
the same environment, as shown in Fig. 7. First of all, to 
examine if ISC actually presents confidence in the 
identification result, its distribution in both identification 
success and identification failure is shown in Fig. 8. The ISC 
values of the utterances are widely distributed throughout a 
range from 0 to1 in the case of identification failure. In the 
case of identification success, however, the distribution of 
those values is localized close to 1. This figure indicates that 
the value of ISC reflects the degree of confidence in the 
identification result.   
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Fig. 8. Distribution of confidence in the identification results of both 
identification success and identification failure. 

 
For the purpose of evaluating a performance improvement 

by soft channel selection, we compared the identification rates 
before and after the application of soft channel selection to 
those conventional combination rules as shown in Fig. 9. The 
experimental results show the identification rate per speaker’s 
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location. When the speakers are located near the microphones, 
the performances before and after the application of soft 
channel selection are comparable as shown in the figure. 
However, as the speakers distance themselves from the 
microphones, the new multiple microphone-based speaker 
identification method improves gradually. And, the relative 
improvement on CM after the application of soft channel 
selection is greater than the other rules. From this result, it is 
inferred that the weight selected using a single perceptron 
reflects the reliability in each identification result well.  
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Fig. 9. Identification results before and after the application of soft 
channel selection to the conventional combination rules. 
 

V. CONCLUSION 
In this paper, we proposed a multiple microphone-based 

speaker identification method, which can effectively improve 
the identification rate by integrating the identification results 
using soft channel selection with a single perceptron in a 
distant-talking environment. The experimental results confirm 
that the proposed speaker identification method improves the 
identification performance even more as the speaker is at a 
distant from the microphones. We suggest that the proposed 
method can be used not only to accomplish the performance 
improvement of distant-talking speaker identification but also 
to provide a speech interface for a wide range of potential 
hands-free applications in robot environments, thereby 
significantly enhancing the quality of human and robot 
interaction. Also, the proposed speaker identification using 
soft channel selection is expected to be useful for performance 
improvement in various ubiquitous environments using 
multiple spatially-distributed microphones.  
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