
Research Article
Agatha: Predicting Daily Activities from Place Visit History for
Activity-Aware Mobile Services in Smart Cities

Byoungjip Kim,1 Seungwoo Kang,2 Jin-Young Ha,3 and Junehwa Song4

1Department of Information and Communication Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
2School of Computer Science and Engineering, KOREATECH, Cheonan 31253, Republic of Korea
3Department of Computer and Communication Engineering, Kangwon National University (KNU),
Chuncheon 24341, Republic of Korea
4School of Computing, KAIST, Daejeon 34141, Republic of Korea

Correspondence should be addressed to Seungwoo Kang; swkang@koreatech.ac.kr

Received 3 July 2015; Accepted 5 November 2015

Academic Editor: Salvatore Distefano

Copyright © 2015 Byoungjip Kim et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a place-history-based activity prediction system called Agatha, in order to enable activity-aware mobile services in smart
cities. The system predicts a user’s potential subsequent activities that are highly likely to occur given a series of information about
activities done before or activity-related contextual information such as visit place and time. To predict the activities, we develop
a causality-based activity prediction model using Bayesian networks. The basic idea of the prediction is that where a person has
been and what he/she has done so far influence what he/she will do next. To show the feasibility, we evaluate the prediction model
using the American Time-Use Survey (ATUS) dataset, which includes more than 10,000 people’s location and activity history. Our
evaluation shows that Agatha can predict users’ potential activities with up to 90% accuracy for the top 3 activities, more than 80%
for the top 2 activities, and about 65% for the top 1 activity while considering a relatively large number of daily activities defined in
the ATUS dataset, that is, 17 activities.

1. Introduction

Instrumented with diverse sensors, a smart city can provide
a variety of intelligent city services such as city planning,
transportation, mobile advertising, and security, enriching
people’s life experiences in the city. A large volume of sensor
data produced in the smart city is an important means to
enable such intelligent services. Recently, many researchers
have been showing the feasibility of using diverse sensor data
to build smart cities. Zheng et al. [1] showed that the GPS
trajectories of taxicabs traveling in cities can be used to detect
flawed city planning issues such as regions of salient traffic
problems. Yuan et al. [2] proposed a recommender system
that provides taxi drivers with locations at which to quickly
find passengers by analyzing passengers’ mobility patterns
and taxi drivers’ pick-up behaviors from the GPS trajectories
of taxicabs. Also, other researchers [3, 4] showed that more
relevant mobile ads can be delivered to people by analyzing
people’s behaviors in a city. Some researchers [5] also showed

that there are spatiotemporal patterns in criminal offense
records in a city. With these research efforts, we may imagine
predating crimes like Minority Report [6], a popular science
fiction (SF) movie.

Among many smart city service scenarios, predictive
information is quite useful, especially for mobile advertising
or recommendation services. Sala et al. [7] proposed a basic
concept of activity-based mobile advertising. Through a user
study, the authors reported important lessons about how ads
related to the current activity are not effective in terms of
the relevance and usefulness perceived by users. For example,
tennis racket ads for people who are playing tennis are not
useful because the people already have rackets and are not
interested in buying rackets at that time. In this case, ads
or recommendations related to the next activities in which
the people are likely to partake after playing tennis might
receive more attention. While predicting human behavior is
generally considered not easy due to its inherent uncertainty,
recent research [8] shows that some human behavior such as
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Figure 1: Example of causality-based activity prediction.

mobility has repetitive patterns and thus can be reasonably
predicted.

In this paper, we present a place-history-based activity
prediction system called Agatha in order to enable activity-
aware mobile services in smart cities. The system predicts
a user’s potential subsequent activities given a series of
information about activities done before or activity-related
contextual information such as visit place and time. Key
information for the prediction includes people’s place visit
history, which includes the types of visit place, visit time,
and visit duration. While people move around a city, their
smartphones collect place in and out events using Wi-Fi
fingerprints. Processing those events, the system extracts the
place visit history and predicts the users’ activities that are
likely to succeed the previous ones based on the history
information by using a machine learning technique.

To predict the potential subsequent activities, we have
developed a causality-based activity prediction model using
Bayesian networks. The basic idea of predicting activities is
that where a person has been or what he/she has done so
far influences what he/she will do next (see Figure 1).The idea
is based on twomain intuitions: activity causality and patterns
of activity sequence. The first one, activity causality, suggests
that current activities are influenced by the current contexts,
such as time of day and location, as well as the history of the
previous contexts, such as visit place sequence. The second
one, patterns of activity sequence, implies that people’s
common daily activities exhibit certain patterns to some
extent. For example, housewives and single career women
would usually show different activity sequence patterns in
daily life. More specifically, housewives are highly likely to
complete the following sequence: (a) personal care activities
at home and (b) grocery shopping at a commercial complex.
On the other hand, single career women are highly likely to
do the following: (a) personal care activities at home, (b) work
at an office, and (c) socializing and relaxing activities at a
commercial complex. Based on these intuitions, the system
extracts influential contexts from location streams as a main
feature to infer activities. Then, it predicts the next activities
based on the history of the influential contexts.

Our contributions are summarized as follows.
First, we present a place-history-based activity prediction

system. The system has an advantage in that it can enable
predictive mobile services by analyzing the location history

that is usually available in smartphones. It shows the possi-
bility that diverse daily activities such as working, eating, and
shopping can be predicted without requiring complex body-
worn sensors to recognize daily activities.

Second, we develop a causality-based activity prediction
model using Bayesian networks. To deal with a large number
of random variables in the model, we have developed a
hierarchical Bayesian network that reduces the complexity of
training and inference.

Third, we present evaluation results using a real-world
large dataset, that is, the American Time-Use Survey (ATUS)
dataset [9] published by the US government. It includes
more than 10,000 people’s location and activity history. Our
evaluation shows that Agatha can predict users’ potential
activities with up to 90% accuracy for the top 3 activities,
more than 80% for the top 2 activities, and about 65% for
the top 1 activity while considering a relatively large number
of daily activities defined in the ATUS dataset, that is, 17
activities.

This paper is organized as follows. In Section 2, we discuss
related work. We present an overview of the system archi-
tecture in Section 3 and an activity prediction model using
Bayesian networks in Section 4. We discuss the implementa-
tion in Section 5 and evaluation results in Section 6. Finally,
we conclude the paper in Section 7.

2. Related Work

2.1. Activity Recognition. In a ubiquitous computing domain,
activity recognition has been receiving much attention. In
general, there are three different approaches for activity
recognition: (1) kinematic-based activity recognition [10,
11], (2) object-use-based activity recognition [12, 13], and
(3) location-based activity recognition [14–16]. Kinematic-
based recognition and object-use-based recognition are usu-
ally achieved with inertial sensors such as accelerometers
attached to either people or objects. Body-worn or object-
attached inertial sensors enable fine-grained activity recogni-
tion mainly related to the movement of a body, for example,
walking, running, standing still, and bicycling, or the move-
ment of an object, for example, drinking a cup of water and
cooking. However, the semantics of the recognizable activi-
ties are limited for daily activities performed in diverse places
in a city, for example, eating, shopping, and socializing. As an
alternative, location-based activity recognition is considered
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Figure 2: General processing stages of location-based activity recognition.

simple and practical in order to recognize daily activities
related to diverse city places.

2.2. Location-Based Activity Recognition. Focusing on the
prevalence of localization technologies such as GPS and
Wi-Fi, there has been much effort to propose location-
based activity recognition approaches [14, 15, 17]. Generally,
location-based activity recognition consists of three process-
ing stages: (1) location sensing, (2) feature extraction, and (3)
activity inference (see Figure 2). For location sensing, GPS-
and Wi-Fi-based localization are commonly used. Feature
extraction and inference are different for the specific goal
of each proposed approach. Broadly speaking, there are two
types of machine learning techniques for activity inference
models: (1) stochastic models such as Naı̈ve Bayes models,
hidden Markov models (HMMs), and Bayesian networks
(BNs) and (2) nonstochastic models such as decision trees
and Support Vector Machines (SVMs). In many research
projects [14–16], stochastic models have been preferred due
to the uncertainty of and the variability in human activities.

Ashbrook and Starner [14] proposed a HMM-based
scheme to learn significant locations from GPS traces and
predict transitions between locations. Different from our
work to predict potential activities from previous activities
or related contextual information, the previous work focused
on extracting meaningful locations from raw GPS traces. In
addition, while a HMM-based approach can model highly
variable sequence data, it is not adequate for modeling
causality relations. Also, it is hard to accept 𝑁-step previous
states due to the computational complexity and highmemory
consumption, although the 2nd- and the 3rd-order Markov
assumptions are possible.

The work by Liao et al. [15] used a relational Markov net-
work (RMN), which is an extension of conditional random
fields (CRFs). An RMN is able to model diverse relations
of activities and their contexts, addressing the limitations of
the HMM. However, it is still hard to accept 𝑁-step previ-
ous states because it assumes a Markov process on an
activity sequence. Also, it is still limited in that it simply
maps an activity to a place, for example, “home activity” to
“home,” which is not practical in real situations. Moreover,
the evaluation was performed under a limited condition with
a small number of people and activity types, that is, 5 people
and 6 activity types.

A Bayesian network (BN) is a probabilistic graphical
model that represents a set of randomvariables and their con-
ditional dependencies via a directed acyclic graph.

For example, a BN can represent the probabilistic relationship
between diseases and symptoms. The most important
advantage of the BN is that it is appropriate for modeling
causality. Also, it is a simple and efficient approach compared
to CRFs and HMMs, especially when considering problems
in which the number of random variables is large and the
available memory is limited. However, there have been only
a few applications of BNs for activity inference. Patterson et
al. [17] used a dynamic Bayesian network (DBN) for a quite
different goal, that is, inferring transportation modes. The
transportation mode could be more strictly classified than
the activity. Also, the number of its states, for example, 4
transportationmodes, was far less than that of daily activities.
We also adopted the BN-based approach to benefit from its
advantage to predict potential subsequent activities, given a
series of previous states. Our BN model is trained and used
to predict a number of activities, that is, 17 activities defined
in the ATUS dataset.

2.3. Localization. For location-based activity recognition,
choosing the underlying localization technology is impor-
tant. The localization techniques can be roughly classified
into (1) GPS-based [14, 15, 17], (2) Wi-Fi-based [18, 19],
and (3) Bluetooth-based approaches [20]. The traditional
location-based activity recognition systems mainly relied
on GPS-based localization. However, GPS-based localiza-
tion is inherently not appropriate for place-level (or store-
level) localization, because the accuracy of GPS significantly
decreases in downtown building valley and does not work
indoors. Thus, Wi-Fi and Bluetooth localization techniques
are more appropriate for place-level localization. Since
Bluetooth-based localization requires intensive deployment
of Bluetooth beacon devices over a large city, we adoptWi-Fi-
based localization for detecting place in/out events.We utilize
an open-source Wi-Fi fingerprinting tool, Elekspot [21].

2.4. Location Prediction. Location prediction has been inves-
tigated by many researchers, since it can enable interesting
and promising applications such as targeted mobile adver-
tising and efficient wireless communication. BreadCrumbs
[22] uses location prediction to facilitate the wireless commu-
nication of mobile users. WhereNext [23] predicts the next
location of moving objects by matching a new GPS trajectory
to a set of similar GPS trajectories. NextPlace [24] presents a
prediction model based on nonlinear time series analysis in
order to predict not only the next location but also the arrival
and residence time of a mobile user. Exploiting frequent
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Figure 3: Overall system architecture.

sequential place visit patterns in a large shopping mall,
VisitSense [25] provides a probabilistic prediction model
based on Bayesian networks. Different from location predic-
tion, we investigate activity prediction. Due to the different
characteristics of people’s daily activity patterns, for accurate
prediction, we need to carefully devise a prediction algorithm
that is a bit different. We briefly present the related work of
activity prediction in the following subsection.

2.5. Activity Prediction. Activity prediction has not been
as heavily investigated as activity recognition. The goal of
activity prediction is to predict the future activity occurrence.
Similar to location prediction, the basic approach is to analyze
sequential patterns. However, activity prediction requires
more sophisticated prediction models, since activity patterns
are more complex. For example, diverse activities can happen
in the same location. More specifically, diverse activities such
as eating, sleeping, and working can happen at home. This
means that the uncertainty of activity prediction is higher
than that of location prediction. Recently, there have been
some research efforts [26–28] in robotics. Their main goal
has been to predict activities to facilitate interaction between
humans and robots. Consequently, they try to predict fine-
grained physical activities such as taking an object and
moving an object and, thus, mainly rely on computer vision
techniques. Instead, we attempt to predict daily routine
activities that span a relatively longer term, for example,
shopping in amall, by using unobtrusive smartphone sensors
such as Wi-Fi or GPS. With this approach, we can enable
activity-aware applications in an unobtrusive way.

3. System Overview

3.1. Usage Scenario. As a usage scenario of activity prediction
system in a smart city, we can imagine activity-aware mobile
advertising at a commercial complex. On a Friday evening,
a newly married couple, Tom and Jane, plan to have dinner
at theMall of America (orMacy’s) downtown. After finishing
his work, Tomdrives to nearby Starbucks to pick up Jane, who
is waiting for him. Tom is worried about where to go because
they have not decided yet. After parking his car at a parking

lot, and entering the Mall of America, Tom is alerted from
his mobile phone. Tom’s mobile phone shows a map of the
Mall of America that displays some attractive places for him.
The place advertising is based on which activities Tom will
be highly likely to do at the Mall of America. Therefore, Tom
can see highly relevant and attractive place advertisements.
After looking over some advertisements, Tom decides to go
to an Italian restaurant Giovanni’s that specially offers a bottle
of luxurious Italian wine to customers who have a course
menu. At the same time, Jane’s mobile phone shows a map
that displays some advertisements for shopping places, such
as jewelry shops attracting her.

3.2. Overall System Architecture. We present a place-history-
based activity prediction system, Agatha, as an enabler of
the activity-aware mobile services in a smart city. Figure 3
shows the overall system architecture. The system consists of
place visit history collectors running on users’ smartphones
and an activity prediction engine running on a remote cloud
server. The place visit history collectors are responsible for
detecting a user’s place in/out events and reporting the place
visit history to the prediction engine.While people go around
a city, their smartphones collect place in/out events based
onWi-Fi-based localization.The prediction engine performs
feature extraction and activity prediction using the place-
related events collected from mobile users. Assuming the
previous usage scenario, when Tom and Jane come into
the Mall of America, their mobile phones automatically
upload the logged place visit history to the prediction engine.
Then, the engine predicts their highly likely activities at
the commercial complex. Based on such prediction, mobile
advertising application providers offer target ads or coupons
to them.

3.3. Place Visit History Collector. Detecting place in and out
events is an essential component for place-history-based
activity prediction. We develop a place visit history collector
for the place in/out event detection on users’ smartphones.
It basically employs a Wi-Fi-based localization approach
for place-level localization as mentioned in Related Work.
For Wi-Fi fingerprinting, we use an open-source tool called
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Elekspot [21]. It can uniquely identify a place (or room)
by using a set of accessible Wi-Fi access points (APs) and
the corresponding received signal strength indicator (RRSI)
values or fingerprints. One of the important features of the
Elekspot is that it exploits a crowdsourcing approach, in
which users of Wi-Fi-enabled mobile devices contribute
fingerprints and help to build a radio map in a collective
manner.

Although the Elekspot is a very useful tool for place-
level localization, it is still not enough to detect place in/out
events. For place in/out event detection, we further develop
a simple and efficient algorithm based on the Elekspot. The
Elekspot periodically performs Wi-Fi scanning and resolves
the current place. From the Elekspot, the place visit history
collector periodically receives the Elekspot’s place update
events that consist of place name, place category, place geo-
graphic coordinates, and confidence value. It then determines
whether a user moves in or out of a place by comparing the
current and the previous place name. To detect false positives
and negatives, it uses the confidence value that indicates how
well theWi-Fi fingerprints match. By monitoring a threshold
confidence value 𝛼 (0 < 𝛼 < 1), it finally detects place in/out
events.

For place visit history collection, we define a place visit
event,𝑉(𝑢

𝑖
, 𝑝
𝑗
) = ⟨uid, pid, 𝑡in, 𝑡out⟩, where the uid is an iden-

tifier of the user 𝑢
𝑖
, the pid is an identifier of the place 𝑝

𝑗
, the

𝑡in is the time when the user 𝑢
𝑖
moves into the place 𝑝

𝑗
, and

the 𝑡out is the time when the user 𝑢
𝑖
moves out of the place 𝑝

𝑗
.

The place visit event 𝑉(𝑢
𝑖
, 𝑝
𝑗
) is generated by composing the

primitive events, that is, place in and place out events detected
by the place visit history collector.They can be represented as
follows: 𝐼(𝑢

𝑖
, 𝑝
𝑗
) = ⟨uid, pid, 𝑡in, null⟩ for a place in event and

𝑂(𝑢
𝑖
, 𝑝
𝑗
) = ⟨uid, pid, null, 𝑡out⟩ for a place out event.

3.4. Activity Prediction Engine. The prediction engine builds
and updates a causality-based activity prediction model that
is effectively and flexibly learned by using Bayesian net-
works. It operates in two modes: offline learning and online
prediction. In offline learning mode, the engine trains the
activity model by using training data collected from a large
number of people. In online prediction mode, the prediction
engine receives a large number of place visit histories from
many users’ smartphones. It extracts and estimates features
previously defined for an activity prediction model. It then
predicts activities based on the trained activitymodel. Finally,
it performs postprocessing by using the profile knowledge
previously extracted at the offline learning mode.

4. Causality-Based Activity Prediction Model

To develop the activity prediction engine, we use Bayesian
networks (BNs) that can capture activity causality and activity
sequence patterns effectively:

(i) Activity causality: activities are influenced not only
by the current contexts but also by the history of the
previous contexts.

(ii) Activity sequence pattern: people’s daily activities
imply some patterns. For example, it is highly likely

that average housewives do personal care at home and
afterward go grocery shopping at a shopping mall.
Meanwhile, single career women would do personal
activities at home, work at their offices, and then go
for socializing and relaxing at a commercial complex.

Our activity predictionmodel learns the activity sequence
patterns by using BNs and predicts potential subsequent
activities based on the history of influential contexts. We take
visit place, visit time, visit duration, and transportationmode
from ATUS data and use them as the influential contexts.

The challenges in building a BN come from scalability
and efficiency. The model has a number of random variables
corresponding to the influential contexts. Also, each random
variable has a large number of states. For example, there are
17 activity types in our activity category. This increases the
complexity significantly in terms of memory consumption
and learning time. To address these challenges, we con-
sider conditional independence and develop a hierarchical
Bayesian network.

We use the term place as below:

(i) A place is a structured space in a city where people
perform some activities. It may be either an open or a
closed space.

(ii) A simple place is where only one or two typical
activities occur, for example, restaurant, and grocery
store.

(iii) A complex place is where multiple simple places are
colocated so that diverse activities can occur. For
example, in a shopping mall, diverse activities such as
shopping, socializing, eating, and entertaining occur
[29, 30].

It is also important to select the categories of places and
activities properly in designing and evaluating an activity
prediction system.We use the classification of tier 1 activity in
the ATUS dataset [9]. The categories of places and activities
are summarized below.

4.1. Features for Activity Prediction

(i) Activity is denoted by A and the domain of A by
dom(A):

dom(A) = {personal care, household activities,
caring for household members, caring for non-
household members, work, education, con-
sumer purchases, personal care service, house-
hold services, government services, eating and
drinking, socializing, sports, religious activities,
volunteer activities, telephone calls, others}.

(ii) Visit place is denoted by P:

dom(P) = {home, workplace, other’s home, res-
taurant, worship place, grocery store, other
store, school, outdoors away fromhome, library,
bank, gym, post office, other place}.
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Figure 4: A flat Bayesian network for activity prediction.

(iii) Visit time is denoted by T:

dom(T) = {𝑡
𝑖
| 𝑡
𝑖
is a discretized state. 0 hour ≤

𝑅min(𝑡𝑖) < 24 hours, where 𝑅min(𝑡𝑖) is the mini-
mum value of the range of state 𝑡

𝑖
}.

(iv) Visit duration is denoted by D:

dom(D) = {𝑑
𝑖
| 𝑑
𝑖
is a discretized state. 0min ≤

𝑅min(𝑑𝑖), where 𝑅min(𝑑𝑖) is the value of the
minimum value of the range of state 𝑑

𝑖
}.

(v) Transportation mode is denoted byM:

dom(M) = {car, walk, bus, bicycle, other mode}.

We use X to denote the influential contexts collectively;
that is,𝑋 = {𝑃, 𝑇,𝐷,𝑀}.The states of𝐴 and𝑃 are determined
from ATUS data. The two continuous random variables, 𝑇
and𝐷, are discretized. We further denote the current activity
and influential contexts by 𝐴

0
and𝑋

0
= {𝑃
0
, 𝑇
0
, 𝐷
0
,𝑀
0
} and

the 𝑖th previous activities and contexts by 𝐴
𝑖
and 𝑋

𝑖
=

{𝑃
𝑖
, 𝑇
𝑖
, 𝐷
𝑖
,𝑀
𝑖
}, 1 ≤ 𝑖 ≤ 𝑛.

4.2. Hierarchical Bayesian Network. Causality plays an
important role in the process of constructing a BN [31].
Proper consideration of the causality relations reduces the
complexity of the BN especially when building a large-scale
network consisting of a large number of random variables.

Challenges. To show a snapshot of the problem, we consider
a straightforward BN shown in Figure 4, where 𝐴

0
is con-

nected from each influential context, 𝑋
𝑖
, 0 ≤ 𝑖 ≤ 𝑛, and each

𝑋
𝑖
is in turn connected by 𝑋

𝑖+1
in a sequence. The model is

similar to a näıve Bayes model. We call this simple network
a flat BN for comparison with our hierarchical model. The
model can be expressed in the following form under the
conditional independence assumption of BN:

𝑃 (𝐴
0
, 𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑛
) = 𝑃 (𝐴

0
| 𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑛
)

⋅ [

𝑛−1

∏
𝑖=0

𝑃 (𝑋
𝑖
| 𝑋
𝑖+1
)]𝑃 (𝑋

𝑛
) .

(1)

The flat BN is mathematically valid. However, in practice,
it is highly impractical due to the limitations in resources, for

example, limited memory, and learning time. More specifi-
cally, the model would require a table with 𝑠𝑛+1 entries. Here,
𝑠 is the number of states of the individual random variables,
and 𝑛 is the number of random variables {𝑋

0
, 𝑋
1
, . . . , 𝑋

𝑛
}.

Also, the learning time would increase exponentially accord-
ing to 𝑛. For instance, to compute the joint probability 𝑃(𝐴

0
,

𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑛
), we should compute the conditional proba-

bility 𝑃(𝐴
0
| 𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑛
), where 𝑛 + 1 variables of 𝑠

dimension should be considered in the conditional part,
which requires 𝑠𝑛+1 dimensional computation.

Proposed Activity PredictionModel. Figure 5 shows the graph-
ical representation of the hierarchical BN. It significantly
reduces the complexity in dealing with a large number of
random variables for the influential contexts. It is also very
efficient in terms of memory consumption and learning time.

To design the hierarchical BN, we carefully consider
causality relations and probabilistic independence among
variables, avoiding excessive links between the nodes for
contexts and activities.

An important feature of the BN is that previous activities
are inferred from previous influential contexts. The influen-
tial contexts are observable nodes, and the activities are latent
nodes that are not known in real situations.Then, the current
activity is inferred from the history of previous influential
contexts.

For the subdomain 𝑋
𝑖
= {𝑃
𝑖
, 𝑇
𝑖
, 𝐷
𝑖
,𝑀
𝑖
}, we build the

following model by using the causality between current
activity and current influential contexts. That is, the current
activity is inferred from the current place, time of day, activity
duration, and transportation mode:

𝑃 (𝐴
𝑖
, 𝑋
𝑖
) = 𝑃 (𝐴

𝑖
, 𝑃
𝑖
, 𝑇
𝑖
, 𝐷
𝑖
,𝑀
𝑖
) = 𝑃 (𝐴

𝑖
| 𝑃
𝑖
)

⋅ 𝑃 (𝐴
𝑖
| 𝑇
𝑖
) 𝑃 (𝐴

𝑖
| 𝐷
𝑖
) 𝑃 (𝐴

𝑖
| 𝑀
𝑖
) 𝑃 (𝑃
𝑖
| 𝑇
𝑖
)

⋅ 𝑃 (𝐷
𝑖
| 𝑇
𝑖
, 𝑃
𝑖
) 𝑃 (𝑇
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Then, the proposed hierarchical BN is described as
follows:
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Figure 5: A hierarchical Bayesian network.
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The model is constructed with important independence
assumptions. First, we assume the following independence
among contexts, 𝑋

𝑖
, and between activity, 𝐴

𝑖
, and contexts,

𝑋
𝑖
(i.e., intercontext independence):

(i) 𝑋
𝑖
is independent of 𝑋

𝑗
, where 𝑗 ̸= 𝑖 + 1, for 𝑖 such

that 1 ≤ 𝑖 ≤ 𝑛.
(ii) 𝐴

𝑖
is conditionally independent of𝑋

𝑖+1
, 𝑋
𝑖+2
, . . . , 𝑋

𝑛
,

given 𝐴
𝑖+1

and 𝐴
𝑖+2

, for 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛.

Unlike the flat BN, with independence, we do not need
to make links from the previous influential contexts to the
current activity. Instead, the previous contexts, 𝑋

𝑖
= {𝑃
𝑖
, 𝑇
𝑖
,

𝐷
𝑖
,𝑀
𝑖
}, at each stage are first connected to the activity 𝐴

𝑖
at

the stage and serially connected to the current activity 𝐴
0
.

(The assumption ismade by deriving (4) from (3) in the above
equations.)

We also assume the following independence among the
activities, 𝐴

𝑖
:

(iii) 𝐴
0
is independent of 𝐴

𝑖
, for 𝑖 such that 3 ≤ 𝑖 ≤ 𝑛.

This independence allows us to consider only recent
previous influential contexts. (Note that the recent previous
activities 𝐴

1
and 𝐴

2
are latent variables.) It might be good to

compromise between accuracy and complexity.

Learning and Inference Algorithm. We use the EM algorithm
[32] for learning the proposed hierarchical BN. In the
EM algorithm, the 𝐸-step estimates missing values in the
currentmodel and the𝑀-stepmaximizes likelihood.TheEM

algorithm allows us to train the model with latent variables,
for example, 𝐴

1
and 𝐴

2
.

Continuous Feature Discretization. Continuous features such
as visit time and visit duration should be appropriately dis-
cretized. For the discretization of the visit time, we simply
divide a day into 24 states (hours). For the visit duration, a
more sophisticated method is required, because the distribu-
tion of the duration can be highly skewed. We use a simple
and useful method based on a logarithm function: log

𝑥
𝑑 = 𝑠.

Here, 𝑑 is a continuous value of duration that ranges from
0 to the maximum duration, and 𝑠 is a discrete state of the
duration. We use 24 states for the duration and a day (24 ×
60) as the maximum duration. Then, 𝑥 is determined by
log
𝑥
(24 × 60) = 24.

High-Level Feature Estimation. Transportation mode is not
directly extracted but rather estimated from the place visit
events. For the estimation, we develop a simple heuristic
that discriminates the transportation mode based on average
speed between consecutive places. If the speed exceeds the
average of 30 km/h, people’s transportation mode is deter-
mined as by car. Note that the average speed can be easily
estimated from place visit events by using the following for-
mula:

V =
󵄨󵄨󵄨󵄨󵄨
𝑅 (𝑝
𝑗
) − 𝑅 (𝑝

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

𝑉 (𝑜
𝑖
, 𝑝
𝑖
) 𝑡in − 𝑉 (𝑜𝑖, 𝑝𝑖−1) 𝑡out

. (6)

Therein, place 𝑝
𝑗−1

is the immediately previous place of
the place 𝑝

𝑗
, 𝑅(𝑝
𝑗
) is the minimum bounded rectangle of

place 𝑝
𝑗
, and 𝑉(𝑜

𝑖
, 𝑝
𝑗
) is people’s visit event into place 𝑝

𝑗
.

Alternatively, the transportation mode can be inferred
from separate machine learning modules such as HMM and
Bayesian networks. For transportation mode inference, Pat-
terson et al. [17] proposed a dynamic Bayesian network, and
Zheng et al. [33] proposed a decision-tree-based inference
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model. Note that our activity model can easily incorporate
such method because of the flexibility of Bayesian networks.

5. Implementation

We have implemented a prototype of the proposed activity
prediction system including the place visit history collector
on the mobile side and the activity prediction engine on
the server side. The implementation overview is shown in
Figure 6.The shaded boxes are developedmodules.The place
visit history collector has been implemented on an Android
smartphone. For collecting place visit history of a user, it
uses the APIs provided by Elekspot [21] running on the
same smartphone. As mentioned in Section 3 (i.e., System
Overview), Elekspot is an accurate room-level localization
system based on a Wi-Fi fingerprint matching technique.
Because it exploits crowdsourcing for building a Wi-Fi radio
map, we can expand our system to a city scale. Elekspot pro-
vides APIs that give an access to current place ID, name,
and localization confidence. Using Elekspot APIs, the place
visit event detector detects place visit events (i.e., enter and
departure events) by periodically monitoring the current
place ID.Then, the place visit event is collected and stored on
SQLite, a lightweight relational database provided byAndroid
platform. Also, we have implemented a GUI that shows the
current place on a map, lists place visit history, and provides
user options. The GUI is shown in Figure 7. We provide
activity prediction APIs that developers can use to develop
interesting activity-aware applications on smartphones.

The prediction engine has been implemented on a server.
It mainly consists of the Learning Manager and Prediction
Manager.The LearningManager trains the BN-based activity

prediction model by using a place visit history dataset col-
lected frommany users.The PredictionManager predicts the
next activity by using the trained activity prediction model.
The prediction engine has been implemented based on Java
Web technology. Main components such as the Learning
Manager and Prediction Manager have been implemented as
servlets. We used Apache Tomcat 5.x as a servlet container.
For the activity predictionmodel, we used JavaAPIs provided
by SMILE [34]. SMILE (Structural Modeling, Inference, and
Learning Engine) is a platform-independent library that
implements graphical probabilistic models such as Bayesian
networks. Although SMILE is implanted in C++, we used
jSMILE, a Java interface. The prediction engine runs on a
Linux machine equipped with Intel Core Duo 2.4HzCPU
and 4GB memory.

6. Evaluation

6.1. Dataset. ATUS provides meaningful data for learning
and evaluation of causality-based activity prediction models
because they include a large number of real activity sequences
recorded in respondents’ daily lives. For example, 2008
ATUS data contains about 260,000 activity episodes collected
from about 12,000 households. Partridge and Golle [16] also
pointed out that time-use surveys such as ATUS can be used
as useful data for activity inference in ubiquitous computing.
To compare the accuracy of our model with that of the
previous approach, we used the 2008 ATUS dataset that is
used in the previous work [16]. We used 150,000 activity
episodes for learning and 30,000 episodes for evaluation. We
exclude travelling activities such as moving in vehicles from
the data.
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(a) Current place view (b) Place visit history view (c) Configuration view

Figure 7: (a) Current place view that shows user’s current geographical location on a map and shows place name identified by Wi-Fi
localization, (b) place visit history log view, and (c) configuration view.
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Figure 8: Prediction accuracy of the combination of each feature.

6.2. Effect of Influential Contexts. We evaluate the effect of
the current influential contexts, that is, visit place, visit time,
visit duration, transportation mode, and their combinations,
on the activity prediction. Figure 8 shows that the prediction
accuracy varies depending on different combinations of
influential contexts. When all four contexts are given, the
prediction model achieves the highest accuracy, that is, up
to 86% for top 3 activities, 78% for top 2 activities, and 63%
for top 1 activity. In practice, however, the duration is not
available at the time of prediction; it can be obtained only after
an activity is finished. With the combination of the remain-
ing three contexts, that is, place, time, and transportation,

the prediction accuracy slightly decreases, that is, about 85%
for top 3 activities, 73% for top 2 activities, and 54% for
top 1 activity. Note that use of additional information such
as previous influential contexts can improve the accuracy
achieved by current influential contexts.

Figure 8 also shows that a moderate level of prediction
accuracy can be achieved with combination of only two
contexts. If duration is included, the combination of place
and duration results in the highest prediction accuracy, 58%
accuracy for top 1 activity. If duration is excluded, the com-
bination of place and time shows the highest accuracy. Note
that place is the most important context; the combinations
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including place show higher accuracy than the combinations
without place information.

We also evaluate the effect of the previous contexts on the
current activity. Figure 9 shows that it is possible to predict
activities to some extent only using the previous contexts;
for top 3 activities, about 64% of accuracy could be achieved
with the previous place information only. Among them,
the combination of the immediate previous activity and the
second previous activity is most influential to the current
activity. In practice, however, it is not straightforward to know
the previous activities with certainty; they also should be
inferred from relevant contexts. The proposed hierarchical
BN infers the previous activities from the previous influential
contexts to better predict the current activity together with
current influential contexts.

6.3. Prediction Accuracy of Hierarchical BN. We compare the
prediction accuracy of the hierarchical BN with that of the
flat BN as well as the maximum likelihood estimator [16].
Figure 10 shows that the accuracy of the hierarchical BN is
better than the other prediction models. We evaluate the
prediction accuracy of the hierarchical BN in two different
cases: (1) with and (2) without latent variables. The case
of “with latent variables” means that previous activities are
not given when performing prediction. Instead, the previous

activities are inferred from the previous influential contexts
such as visit place, visit time, and visit duration. With
latent variables, the hierarchical BN shows about 85% of
prediction accuracy for top 3 activities, about 75% for top 2
activities, and about 60% for top 1 activity, respectively. If the
previous activities are given when performing prediction, the
accuracy increases more than 5%. Without latent variables,
the hierarchical BN shows about 90% of accuracy for top 3
activities, about 80% for top 2, and about 65% for top 1,
respectively.

The accuracy of the flat BN is about 73% for top 3, 61% for
top 2, and 45% for top 1, respectively. These are much lower
than those of the hierarchical BN. This is mainly because the
flat BN is very inefficient in terms ofmemory use. In the given
experiment setting (i.e., 4 GBmemory), we could not include
all the random variables when training the model due to
memory limitation. More specifically, we could include only
the immediate previous influential contexts in the flat BN.We
failed to train the flat BNwith SMILE/GeNIe [34] because the
tool reached maximum memory use. The flat BN consumes
memory heavily because the conditional probability table
of the current activity node increases exponentially propor-
tional to the number of directly linked nodes. Note that the
hierarchical BN consumes only about 116MB to deal with
immediate and second previous influential contexts. This
result shows that the hierarchical BN achieves much higher
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prediction accuracy than the flat BN, while using much less
memory (i.e., almost 10 times less memory use).

The maximum likelihood estimator shows relatively high
accuracy, that is, 60%, compared to the flat BN. Note that
the accuracy has been achieved under the assumption that
the previous activities are given. In other words, the activity
prediction is done from the previous activity history, not
from the previous location history. In the same situation (i.e.,
without latent variables), the hierarchical BN achieves a top
1 prediction accuracy of about 65%, which is 5% higher than
that of the maximum likelihood estimator.

Even though the prediction accuracy might not be sig-
nificantly improved over that of the maximum likelihood
estimator, the proposed hierarchical BN ismore efficient than
the maximum likelihood estimator due to its conditional
independence assumptions, so it is adequate to build a city
scale system. Generally, the maximum likelihood estimator
requires more computational resources such as memory
for training and inference, as it maintains a global joint
probability distribution table. Also, the proposed hierarchical
BN is more robust than the maximum likelihood estimator,
because the proposed model handles the latent variables well
by using the EM algorithm.

7. Conclusion

In this paper, we propose a place visit history-based activity
prediction system to enable activity-aware mobile services in
smart cities. For this purpose, the system adopts a causality-
based activity prediction model using Bayesian networks. It
uses location-based activity causality, that is, the idea that
where you have been so far influences what you will do
next. The causalities are inherent in common daily activi-
ties that usually disclose an activity sequence pattern. The
model effectively captures such activity causalities as well as
activity sequence patterns from so-called influential contexts
such as visit place, visit time, duration, and transportation
mode. We develop a hierarchical BN to efficiently tackle
the complexity of learning activity causalities between many
diverse influential contexts.We evaluate the predictionmodel
using the American Time-Use Survey (ATUS) dataset that
includes more than 10,000 people’s location and activity
history. Evaluation results show that it can predict users’
potential activities with up to 90% of accuracy for top 3
activities, more than 80% for top 2 activities, and about 65%
for top 1 activity while considering a relatively large number
of daily activities defined in the ATUS dataset.
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