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Abstract

An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and
panels subject to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria
of concrete in the tension–tension region and the average stress–strain relation of reinforcing steel. Based on strain distribution functions
of steel and concrete after cracking, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses
and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete uniaxial
tension members with results from experimental studies. In advance, correlation studies between analytical results and experimental data
are also extended to RC panels subject to biaxial tensile stresses to verify the efficiency of the proposed model and to identify the sig-
nificance of various effects on the response of biaxially loaded reinforced concrete panels.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced concrete (RC) structures are made up of two
materials with different characteristics, namely, concrete
and steel. Since concrete is relatively weak and brittle under
tension, cracking is expected when significant tensile stress
is induced in a member, and reinforcing steel is used to pro-
vide the necessary tensile strength for a structural member.
In advance, because of weak tensile strength of concrete,
the nonlinear response of RC structures can be roughly
divided into three ranges of behavior: the uncracked elastic
stage, the crack propagation of concrete and the plastic
(yielding of steel or crushing of concrete) stage. The post-
cracking behavior of RC structures also depends on many
influencing factors (the tensile strength of concrete, anchor-
age length of embedded reinforcing bars, concrete cover,
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and steel spacing, etc.) which are deeply related to the bond
characteristics between concrete and steel [13]. Accord-
ingly, to verify the nonlinear behavior of RC structures
including the bond-slip mechanism, many experimental
and numerical studies have been conducted [16,32,35].

In earlier studies, characterization itself of the tension-
stiffening effect due to the nonnegligible contribution of
cracked concrete was the main objective. Recently, follow-
ing the introduction of nonlinear fracture mechanics in RC
theory [27,5], modeling of the interaction between concrete
and reinforcement from the extension of fracture energy
concept [22], more advanced analytical approaches have
been conducted [29], Sato and Vecchio [30] and many
numerical models which can implement the tension-stiffen-
ing effect into the stress–strain relation of concrete have
been proposed [25,16,6]. Christiansen and Nielsen [11] pre-
sented a simple model for the prediction of plane stress
behavior of reinforced concrete through determining stres-
ses, strains and crack widths. Besides, the ACI committee
224 [1] and CEB-FIP [9] predict, in an empirical manner,
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the average stress–strain curves of a RC element subject to
biaxial loadings.

Two basically different approaches have been used in
considering the tension-stiffening effect by defining the
strain softening part in the tension region [4,7,13]: (1) a
modified stiffness approach based on a repeated modifica-
tion of stiffness according to the strain history; and (2) a
bond-slip based model constructed from the force equilib-
rium and strain compatibility condition at the cracked con-
crete matrix with the assumed bond stress distribution.
Even though the second approach is broadly adopted in
finite element formulation, there are still some limita-
tions in application because this approach requires the
assumption of bond stress distribution function along the
reinforcement axis, and it follows a series of complex inte-
gration and derivation procedures to calculate the elonga-
tion and strain increment of steel and accompanying
relative slip.

To address this limitation in adopting the bond-slip
based tension-stiffening model, an analytical approach to
predict the post-cracking behavior of RC structures subject
to uniaxial or biaxial tensile stresses is introduced in this
paper. Unlike previous approaches based on the assumed
bond stress distribution function, the strain distribution
of concrete, which is abruptly changed after cracking
occurs, is defined with a polynomial function satisfying
the boundary conditions at the crack face and at the inner
end of the transfer length. Then, the polynomial order is
determined from the energy balance condition before and
after cracking. The validity of the introduced approach is
established by comparing the analytical predictions for
RC tension members with results from experimental and
previous analytical studies. Moreover, numerical analyses
for idealized RC panels subject to biaxial tensile stresses
are conducted to verify the applicability of the constructed
tension-stiffening model to RC containments subject to
internal pressure.

2. Cracking behavior of tension member

When a symmetrical uncracked RC member is loaded in
tension, the tensile force is distributed between the reinforc-
ing steel and concrete in proportion to their respective stiff-
ness, and cracking in concrete occurs when the stress
reaches to a value corresponding to the tensile strength of
concrete. In a cracked cross-section, all tensile forces are
balanced by the steel encased in concrete matrix only.
However, between adjacent cracks, tensile forces are trans-
mitted from the steel to the surrounding concrete by bond
forces. This effect is called the tension-stiffening effect. As
shown in Fig. 1, tension-stiffening effect can be illustrated
by the relation between the average stress and the average
strain of an axial member through the entire range from
the uncracked state to the yielding state.

During the formation of primary cracks, the average
strains increase with a decrease of the stress in the concrete
until a stabilized cracking state is reached (point A in
Fig. 1). A continuous increase of loading results a gradual
increase of the stiffness because of the bond resistance
between concrete and steel, and the crack width is gradu-
ally enlarged without an additional change in the number
of cracks up to reach to the yielding of reinforcing steel
at the crack (point B in Fig. 1). Moreover, when the aver-
age strain along the entire length of a member reaches to
the yielding strain, the stiffening effect of concrete ends at
point C in Fig. 1. Fig. 1, which illustrates a typical exper-
imental response of a RC tension member, also shows that
the average stress–strain curve of reinforcing bars embed-
ded in concrete is very different from that of the bare steel
bars. First, the average yield stress of embedded steel bars
fn is significantly less than the yield stress of bare steel bars
fy and, second, the post-yield range of the average stress–
strain curve of RC composite represents a more sloped
line, rather than an almost horizontal plateau in bare steel
bars.

From these results mentioned above, the following can
be inferred: (1) the tension-stiffening model proposed in
the CEB-FIP [9], which assumes the same slope of the
stress–strain relation with that of the bare steel bar on
the basis of no bond-slip at the post-cracking stage (A–B
region in Fig. 1) overestimates the stiffness of RC structure;
(2) a direct use of the stress–strain relation of bare steel bar
will result in an overestimation of the post-yielding behav-
ior of RC structures in the case of considering the tension-
stiffening effect into the stress–strain relation of concrete as
shown in Fig. 1(b); and (3) beyond steel yielding and up to
the end of the yield plateau, the concrete matrix can con-
tribute to the strength of a tension member through the
remaining bond resistance (B–C region in Fig. 1).

If RC member is subject to tension, the reinforcing steel
starts yielding close to cracks, but other volumes of steel
remains elastic because of bond interaction. At this
moment, the averaged yield stress must be less than the
yield stress of bare bar [33,24]. Determination of the ele-
ment stiffness on the basis of the yielding of steel at a
cracked section at which a local stress concentration
appears in the steel may cause an overestimation of the
structural response at the post-yielding range. Since this
phenomenon is accelerated with an increase of the defor-
mation, the analysis of RC elements accompanying rela-
tively large deformations requires the use of average
stress–strain relations [6,29]. Accordingly, to trace the
cracking behavior of RC structures up to the ultimate limit
state by using the smeared crack model in which the local
displacement discontinuities at cracks are distributed over
some tributary area within the finite element and the
behavior of cracked concrete is represented by average
stress–strain relations [21], the average stress–strain rela-
tion of steel needs to be defined. Considering these charac-
teristics related to the cracking behavior, the following
average yield stress, which was introduced by Salem and
Maekawa [29] from the analytical results through correla-
tion studies with experimental data, is used in this paper
to revise the monotonic envelope curve of bare steel
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Fig. 1. Post-cracking behavior of a RC tension member: (a) average stress–strain relation of a RC tension member and (b) average stress–strain relation of
concrete.
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fn ¼ fy � d
ft
q

ð1Þ

where fn is the average yield stress, fy is the yield stress of
bare bar, d is a coefficient, ft is the tensile strength of con-
crete, and q is the reinforcement ratio selected to be greater
than the critical reinforcement ratio, qcr = ft/fy. More de-
tails for the average stress–strain relation of steel including
the hardening parameters and the average ultimate
strength can be found elsewhere [29].

According to Salem�s suggestion, the use of a fixed value
of d = 0.5 gives reasonable estimation of the yield stress in
the case of specimens with relatively small reinforcement
ratio, but gives underestimation of the yield stress for the
specimens with large steel ratio (see Fig. 2). Therefore, cor-
rection of the coefficient d in Eq. (1) is accomplished in this
paper by introducing the following relation, which was
designed through a regression of experimental data [6,31].
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Fig. 2. Correction of coefficient d.
3. Tension-stiffening model of uniaxial tension member

3.1. Bond-slip behavior of tension member

A part of an RC member subject to uniaxial tension is
shown in Fig. 3. When the axial load N is applied, from
the basic assumptions adopted, the far ends represent the
fully cracked state with a steel strain of es2. The tensile force
N is transferred from the steel bar to the concrete by bond
stress, and the value of the bond stress is zero at the inner
end of the transfer length lt. This means that there is no
bond-slip within the central region bounded by the transfer
length. Moreover, it can be assumed that the strains in steel
and concrete are equal to each other at x = lt, and the
strain value corresponds to es1.
Fig. 3. Strain distribution in a part of an RC tension member: (a) tension
member, (b) strain distribution and (c) strain difference.
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From the strain distribution, the local slip w(x) can be
defined as the total difference in elongations between the
reinforcement and the concrete matrix measured over the
length between a distance x from a crack face and the cen-
ter of the segment (x = s/2). That is

wðxÞ ¼
Z s=2

x
ðesðxÞ � ecðxÞÞdx ð3Þ

where x is the length between two adjacent cracks, which is
equivalent to the crack spacing, and es(x) and ec(x) are the
strain distributions of steel and concrete, respectively.

On the basis of the force equilibrium and the relation of
Eq. (3), the very well-known following governing differen-
tial equation for the bond-slip can be obtained [16,13]:

d2wðxÞ
dx2

� ð1þ nqÞR0

EsAs

fbðxÞ ¼ 0 ð4Þ

where n = Es/Ec, the steel ratio q = As/Ac, R0 is the perim-
eter of the steel bar, fb is the bond stress at the steel inter-
face, and Es and As are Young�s modulus and sectional
area of steel, respectively.

As mentioned above, the general solution of Eq. (4) is
obtained in previous studies by applying the boundary con-
ditions at the crack face and at the center of the cracked
region based on an assumed bond stress distribution
[32,35]. After obtaining the general solution for the bond-
slip, the strain distributions of steel and concrete and cor-
responding bond stress along the steel axis are successively
calculated using the force equilibrium and the compatibil-
ity condition at an arbitrary location [16]. However, this
approach has some limitations in simulating the cracking
behavior of RC axial members because it requires a series
of complex integration and derivation procedures and the
calculated location representing the maximum bond stress
value is not coincident with that obtained from experimen-
tal study. To solve these limitations, an analytical approach
on the basis of the assumed strain distribution function of
concrete is introduced in this paper.

3.2. Determination of strain distributions

When the applied axial load N1 is relatively small, the
strains in steel and concrete maintain a uniform distribu-
tion with es1 = N1/(AsEs + AcEc) along the length. As the
axial load (N2) gradually increases, the strains in steel
and concrete represent different distributions in the region
from the crack face to the inner end of the transfer length
(see Fig. 4). Moreover, the steel strain es2 at the crack face
and es1 at the center of the segment become es2 = N2/(AsEs)
and es1 = N2/(AsEs + AcEc), respectively.

From Fig. 4, the concrete strain distribution ec(x) is
assumed with a nth order polynomial function, and the
steel strain distribution es(x) can also be expressed in terms
of the concrete strain distribution function from the force
equilibrium of N2 = es2 Æ AsEs = es1 Æ (AsEs + AcEc) and
the relation of es1 = ec1. The strain distributions lead to
esðxÞ ¼ es2 � 1
nq ecðxÞ

ecðxÞ ¼ es1 1� 1� x
lt

� �ncn o : x 6 lt ð5aÞ

esðxÞ ¼ ecðxÞ ¼ es1 : lt 6 x 6 s=2 ð5bÞ

where the area parameter nq is in the range of 0.02–0.5 [15].
Moreover, the transfer length lt can be determined by the
following linear relationship proposed by Somayaji and
Shah [32] on the basis of many experimental data for the
pull-out tests:

lt ¼ Kp

N c

R0

ð6Þ

where Nc is the transfer load equal to Nc = AcEces1 =
N/(1 + nq), and Kp is a constant determined from the
pull-out test. The experimental study by Houde and Mirza
[17] indicates that the value of Kp is in the range of
1/266–1/714 in2/lb, and the average value of 1/385 in2/lb
is used in this paper.

The strain distribution of reinforcing bar changes from
the uniform distribution es1 along the segment before
cracking to the assumed polynomial distribution with the
strain es2 at the crack face and es1 at the inner end of the
transfer length after cracking (see Fig. 4). From the energy
conservation just before and after cracking at the same
axial load N, the assumed polynomial order nc can be
determined because all the internal strain energy compo-
nents can be represented in terms of the concrete strain
with the assumed polynomial order nc, while there is no
additional external work by the axial load N just at crack-
ing. The strain difference of steel es2 � es1 means an increase
of the strain energy at the reinforcing steel, DUs, and that
of concrete es1 � ec(x) corresponds to a decrease of the
strain energy at the concrete, DUc. Moreover, the difference
between DUs and DUc means the energy loss caused by the
bond-slip, Ub. Therefore, the energy conservation can be
written as

DU s � DU c ¼ Ub ð7Þ
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where

DU s ¼
Z
V
Dus dV ¼

Z
V

Z esðxÞ

es1

rs � dedV

¼ AsEs

2

Z lt

0

ðesðxÞ2 � e2s1Þdx ð8aÞ

DU c ¼
Z
V
Duc dV ¼ AcEc

2

Z lt

0

ðe2s1 � ecðxÞ2Þdx ð8bÞ

Ub ¼ R0

Z lt

0

Z wðxÞ

0

sbðwðxÞÞdwdx ð8cÞ

and hence

AcEc

2
� es1es2lt
2nc þ 1

¼ AsEs

2
� es1es2lt
nqð2nc þ 1Þ

¼ R0smax

wa
1 � ð1þ aÞ �

e1þa
s2 � l1þa

t � lt
ðnc þ 1Þ1þa � ððnc þ 1Þð1þ aÞ þ 1Þ

ð9Þ

While calculating the bond energy variation Ub, the rela-
tion of Eq. (3) and the following nonlinear bond stress-slip
relation [9] are used.

sb ¼ smax � ðwðxÞ=w1Þa ð10Þ
where smax is the maximum bond stress of concrete, and w1

and a have the values of 1.0 mm and 0.4, respectively, when
a very good bonding condition is maintained in a confined
concrete [9].

As shown in Eqs. (8a)–(8c), all the strain energy varia-
tions are expressed with the assumed polynomial order
nc. Consequently, the order nc can be determined through
the successive iteration using the bisection method until
Eq. (9) is satisfied. From the CEB-FIP [9], the coefficient
a in Eq. (10) has a value between 0 and 1, and the value
of nc increases in proportional to an increase of a. There-
fore, nc must be larger than 1.0 obtained when a = 0.

3.3. Average stress–strain relation of concrete

If the applied axial load N in a tension member reaches
to 1.3 times of Ncr at the first crack, the specimen shows the
stabilized crack pattern without additional occurrence of
cracking [9,14], and the strain distribution along the mem-
ber length can be represented by Fig. 5 [9]. After the crack
formation has finished (point A in Fig. 1), the maximum
crack spacing between adjacent cracks can be assumed to
be 2.0 times of the minimum crack spacing and is equal
to the transmission length lt (length over which slip
between steel and concrete occurs) [9].

From the geometric configuration for the strain distri-
bution in Fig. 5, constructed on the basis of the assumption
that the slopes in the strain distributions corresponding to
Smax and Smin are the same at point A, the average strain of
reinforcing steel esm, equivalent to the mean value of the
strain distributions of steel, can be calculated as
esm ¼ 1� 3

4
� nc

nc þ 1

� �
� 1

1þ nq

� �� �
rs2

Es

ð11Þ

where rs2 is the steel stress at the crack face when the ap-
plied axial load has N = 1.3Ncr and can be calculated as

rs2

ft
¼ 1:3 � 1þ nq

q

� �
ð12Þ

As shown in Fig. 5, on the other hand, the strain distribu-
tion of concrete decreases with an increase of the steel
strain because of the bond-slip effect but still does not con-
sider the crack width. Accordingly, to satisfy the perfect
bond assumption for the consistent displacement field be-
tween concrete and steel, the strain increment developed
from the consideration of the crack width needs to be
added. It might be reasonable, therefore, to assume that
the average concrete strain ecm at the stabilized crack con-
dition can be simulated by the average steel strain esm de-
fined in Eq. (11) [6]. With the average strain determined
and the force equilibrium equation, the average stress of
concrete at the stabilized crack condition can also be calcu-
lated as follows:

rc ¼
rs2As � esmEsAs

Ac

ð13Þ

The tension-stiffening effect corresponding to an arbitrary
applied axial load Nm can be defined with the strain differ-
ence between es2 and esm (eTS = es2 � esm). Moreover, the
average steel strain can be represented by esm = es2 �
1/nq Æ ecm from Eq. (5a), and the average concrete strain
can also be expressed by ecm = nc/(nc + 1) Æ es1 within the
transfer length range when the strain distribution of ecm(x)
is defined with a ncth polynomial function. Accordingly,
the strain difference corresponding to the tension-stiffening
effect can finally be expressed by eTS = es2 � esm =
1/nq Æ ecm. From this relation, the strain difference at the
crack formation stage and that at the crack stabilizing
stage are ecrTS ¼ 1=nq � ncrc =ðncrc þ 1Þ � es1 and estTS ¼ 0:75=nq �
nstc =ðnstc þ 1Þ � es1, respectively. The polynomial order nc rep-
resents different values at both stages, and the strain differ-
ence eTS must be gradually decreased as the applied axial
load N increases. Namely, the strain difference at the first
cracking (ecrTS) must always be greater than that at the
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stabilized cracking (estTS), and this condition induces the
following inequality condition of:

0:75 � nstc
nstc þ 1

� �
6

ncrc
ncrc þ 1

� �
� e

cr
s1

ests1
ð14Þ

Consequently, the successive iteration of Eq. (9) must be
continued in the range of nc which satisfies Eq. (14), where
ncrc was already calculated from Eq. (9) and nstc is finally
determined by this inequality condition. Then nstc is submit-
ted to Eq. (11) to calculate esm at the stabilized cracking
condition.

A continuous increase of the axial load N over the sta-
bilized cracking load leads to the yielding of reinforcing
steel at the crack face while maintaining the elastic state
at the other region (point B in Fig. 1). It means that the
average steel stress of the embedded steel bar through the
entire length will be smaller than that of the bare steel
bar. A portion of the resisting capacity corresponding to
the difference of yielding stress between the bare steel bar
and the embedded steel bar must be carried by concrete.
Therefore, the effective concrete stress rc and strain ec at
point B in Fig. 1(b) can be calculated by

rc

ft
¼ ðfy � fnÞ

q
ft
; ec ¼

fn
Es

ð15Þ

More increase of the axial load N finally cause the yielding
of the embedded steel bar along the entire span length. To
study the influence that bar yielding and large strains have
on tension-stiffening, a series of RC prisms were tested by
Mayer and Eligehausen [26]. As a result, the yield plateau
of the bare steel bar practically disappears in the member
response, since the plastic strains in the embedded steel
bar are limited to the regions close to the main cracks
and hardly contribute to the overall elongation. Namely,
a larger axial load than that corresponding to the yielding
of the bare steel bar can still be resisted in the post-yielding
range of steel. On the other hand, the post-yield behavior
of RC members was described as the ratio (esn/esr) between
the average steel strain esn and the steel strain esr at the
crack face with respect to esr, as shown in Fig. 6.

As long as the concrete is uncracked, the ratio esn/esr
should be equal to 1. After abrupt drop of the ratio esn/
esr at the first cracking because of a local increase of steel
strain at the crack face, it should increase again between
first cracking and bar yielding. Beyond ey, and up to the
end of the yield plateau, the ratio esn/esr significantly
reduces, until hardening is activated (esr = esh). The steep
reduction is caused by the build-up of the plastic strain
esr close to the bending cracks, while the strains between
the cracks are still elastic and exhibit high gradients. It
means that the concrete still contributes to the strength
of a tension member even after yielding of steel through
the remaining bond resistance.

To take into account this contribution of concrete at the
post-yielding stage, the slope of the average stress–strain
relation is changed in this paper. As shown in Fig. 1(a),
the slope of line B 0C 0, qEsh = q(fy � fn)/(esh � esn), have
been modified to the slope of line BC, qðEsh � ðf 0
y � fnÞ=

ðesh � esnÞÞ, where the stress differences fy � fn and f 0
y � fy

can be assumed to be 0.89 and 0.18, corresponding to
esr = esy and esr = esh in Fig. 6, respectively. The slope of
line BC seems to be converged to 0.8qEsh instead of
1.0qEsh, and the average stress–strain relation of concrete
in the region BC is followed with the equilibrium equation.

4. Extension of model to biaxial stresses

Unlike the reinforcing bars embedded in the concrete
element, whose biaxial material properties are assumed to
be simulated by the direct superposition of each element
without any change in material properties, concrete under
combinations of biaxial stress exhibits different strength
and stress–strain behaviors from those under uniaxial load-
ing conditions by the effects of Poisson�s ratio and micro-
crack confinement. To simulate the change of material
properties according to the biaxial tensile stress state, it is
required to define the biaxial strength envelope in the ten-
sion–tension region.

Fig. 7 shows the biaxial strength envelope of concrete
under biaxial tension. In contrast to a shear wall where
the main part experiences a biaxial stress combination in
the tension–compression region, most of wall in the con-
tainment structures subject to internal pressure experiences
biaxial tensile stress combinations [20]. Accordingly, in the
biaxial strength envelope in the tension–tension region is
regarded to be of great importance. In this paper, the biax-
ial strength envelope proposed by Aoyagi and Yamada [3]
is used, and the accompanying equation for the failure
envelope in the tension–tension region is expressed by

r1p

ft
¼ 1� 0:25

r2

r1

� �2

ð16Þ

The tensile strength rip in the primary direction decreases
with increasing tensile stress in the other principal stress
direction, and failure basically takes place by cracking in
the primary direction. When the cracking occurs, however,
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the principal tensile stress and strain in the other direction
still remain in the ascending branch of the concrete stress–
strain relation. Therefore, the proposed model introduced
in this paper follows the assumption that the concrete
stress–strain relation in the other direction (r2 direction
in Fig. 7) is the same as that of uniaxial loading and does
not change with the variation of tensile stress in the pri-
mary direction before concrete cracking. Using the tensile
strength r1p determined from Eq. (16), the stress–strain
relation of concrete in the tension part can finally defined
on the basis of the uniaxial tension-stiffening model intro-
duced in this paper (see Fig. 1).

To simulate the stress state of concrete under biaxial
loading, the orthotropic model is adopted in this paper
because of its simplicity and computational efficiency
[12]. With reference to the principal axes of orthotropy,
the incremental constitutive relation can be expressed by

dr1

dr2

ds12

8><
>:

9>=
>;¼ 1

1� m2

E1 m
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
0

m
ffiffiffiffiffiffiffiffiffiffi
E1E2

p
E2 0

0 0 ð1� m2Þ �G

2
64

3
75

de1
de2
dc12

8><
>:

9>=
>;
ð17Þ

where E1 and E2 are the secant moduli of the elasticity in
the direction of the axes of orthotropy, which are oriented
perpendicular and parallel to the crack direction, and m is
Poisson�s ratio. The most interesting feature of the material
matrix of concrete in principal coordinates is the presence
of the shear modulus, G, which is implying compression
field theory based on the assumption that the principal con-
crete stress direction coincides with the principal concrete
strain direction. The shear modulus can be calculated by
G = 0.5 Æ (rc1 � rc2)/(e1 � e2) [10]. After cracking, if micro-
crack zone is fully developed, Poisson�s effect disappears
(m = 0).
The use of the orthotropic constitutive relation in Eq.
(17) to simulate cracked concrete may not be totally realis-
tic. In the case of a real crack, the crack surface is rough
and any sliding parallel to the crack will generate some
local stresses or movement normal to the crack. To prop-
erly present this type of behavior, the off-diagonal terms
of the material matrix which relate shear strain with nor-
mal stress should not be zero. The relative magnitude of
these off-diagonal terms decreases as the crack widens.
However, this effect may not be significant in a study which
focuses attention on overall structural behavior, and most
researchers have neglected it [23].

The proposed concrete model accounts for progressive
cracking and changes in the crack direction by assuming
that the crack is always normal to the total principal strain
direction (the rotating crack model). The rotating crack
model which does not need shear transfer model is reason-
ably accurate under monotonic loading paths where princi-
pal stress does not rotate so much. More details can be
found in Ref. [7]. In addition to the definition for the con-
stitutive relations of concrete under biaxial loadings, addi-
tional modifications for the stress–strain relation of steel is
also required. From the biaxial loading test for a series of
orthogonally reinforced concrete panels, Pang and Hsu
[28] found that there was a remarkable difference in the
apparent yield stress fn between 90� panels with the longi-
tudinal steel oriented at 90� to the applied principal stress
and 45� panels with the longitudinal steel oriented at 45�.
As shown in Fig. 8, the apparent yield stresses fn for 45�
panels are lower than those for 90� panels by approxi-
mately 12%, regardless of the parameter B = (ft/fy)

1.5/q
derived by Belarbi and Hsu [6], and this reduction is attrib-
uted to the kinking of steel bars at the cracks.

When this reduction of 0.12 is applied to the equation of
fn=fy ¼ 0:43þ 0:5f �

y =fy, introduced by Belarbi and Hsu [6],
it results the average yield strength reduction of about
0.06fy, f �

y is the average apparent yield stress defined in
Ref. Belarbi and Hsu [6]. In addition, Yamada�s experi-
mental results [34] also show that the maximum shear
strength of RC panels occurs at 45� panels because of the



Table 1
Dimensions and material properties of tension members

Specimen Area (mm2) Ec (MPa) Es (MPa) ft (MPa) fy (MPa) q = As/Ac

1 205.74 · 88.9 23,787 200,000 2.12 400 0.0341
2 305 · 178 27,794 199,955 2.62 469 0.0147
3 127 · 50.8 27,349 223,480 3.19 506 0.0307
4 127 · 50.8 27,349 191,584 3.19 508 0.0331
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most dominant dowel action and its magnitude symmetri-
cally decreases up to reach to the angle 90� between the
longitudinal steel and the applied principal stress. Accord-
ingly, to define the average stress–strain relation of steel
embedded in concrete panels with an arbitrary angle h to
the applied principal stress, Eq. (1) defined for the uniaxial
behavior of RC axial member has been modified as follows:

fn ¼ fy � d
ft
q
� 0:06f y

ffiffiffiffiffiffi
jhj
45

r
� 45� 6 h 6 45� ð18aÞ

fn ¼ fy � d
ft
q
� 0:06f y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90� jhj

45

r
45� < h 6 90�

�90� 6 h < �45�

ð18bÞ
On the other hand, an exact assessment of cracking in RC
panels subject to general membrane stresses seems to be
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very difficult because of many influencing factors such as
different steel ratios in both directions and changing crack
angle according to the stress ratio. Most constitutive mod-
els to trace the cracking behavior of concrete, therefore, are
based on the material matrix in the principal axes, using the
equivalent steel ratio of qeqfy = qxfy Æ cos

2h + qyfy Æ sin
2h

[25] derived from the force equilibrium equation at the fully
cracked ultimate state of a RC panel. This approach can be
effectively used in concrete panels orthogonally reinforced
with similar steel ratios at both directions but also has
some limitations in application to other RC panels.

When the steel ratios at both directions represent a
remarkable difference, the reinforcement with a smaller
steel ratio will govern the tension-stiffening effect, and in
advance, the post-cracking behavior of RC panels. Accord-
ingly, for an exact simulation of the cracking behavior, it
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might be proper to calculate the tensile stress and strain of
concrete along the steel direction first, instead of the prin-
cipal directions of concrete. Then, these stress and strain
are transformed to the principal directions of concrete by

ec1 ¼ excos
2hþ eysin

2hþ cxy cos h sin h ð19aÞ

rc1 ¼
Xn

i

rcicos
2ðh� aiÞ ð19bÞ

where h is the angle between the direction normal to the
crack and the global x-axis, and ai is the orientation of rein-
forcement relative to the global x-axis.

5. Numerical applications

Every nonlinear analysis algorithm consists of four basic
steps: formation of a current stiffness matrix, solution of
equilibrium equations for the displacement increments,
5@300=1500

1500400

60
0

40
5

9
7.

5
97

.5

X

Y

Tendon750

5@200=1000

1000650 650

5@
20

0=
10

00

10
00

65
0

65
0

128 128
380

124

38
0

18
8

96
96

D29

X

Y

a

b

Fig. 10. Configurations and dimensions of biaxial tension specim
state determination of all elements in the model, and a con-
vergence check. All these steps are the same with those used
in the classical nonlinear analysis of RC structures. More
details related to all the formulations from definition of
material properties in the biaxial stress condition to the
convergence check can be found in Ref. [19]. In this paper,
only the efficiency of the introduced tension-stiffening
model is demonstrated through correlation studies between
analytical results and experimental values from idealized
panel tests.

5.1. Uniaxial tension members

In order to testify the efficiency of the proposed tension-
stiffening model, the cracking responses of tension mem-
bers subject to direct tension are analyzed. Four kinds of
tension members whose experimental results are available
in the literature [17,18,27] are selected in this paper, and
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Fig. 11. Finite element idealization of RC panel.
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the material properties of each test specimen are summa-
rized in Table 1.

The comparison of the experimental and analytical steel
stress–elongation relation of the specimen 1 (rectangular
tension member) tested by Houde and Mirza [17] is shown
in Fig. 9(a). In this analysis, the first crack forms at a steel
stress of 94 MPa, while the stabilized cracking state
appears at a steel stress of 122 MPa, which is close to the
experimental results. The analytical prediction agrees well
with the test results.

The prismatic member No. 7 (specimen 2) reinforced
with eight bars, that was tested by Hwang and Rizkalla
[18], is considered a second example. Since the reinforce-
ment is uniformly distributed over the cross section, an
almost constant stress of concrete can be expected. As
shown in Fig. 9(b), the load–average strain curve is very
close to the experimental results, while indicating that
the introduced tension-stiffening model can predict the
load–average strain behavior of a specimen through all
the loading steps. As the deformation increases, the
stress–elongation relation converges to that of a bare bar.

The last examples (specimens 3 and 4) are for the analy-
ses of two reinforced concrete panels with different arrange-
ment and size of reinforcing steel. Fig. 9(c) and Fig. 9(d)
shows comparison between the experimentally measured
and numerically predicted stress–strain curves with that cal-
culated by CEB-FIP [9] model. As shown in these figures,
CEB-FIP model overestimates the concrete contribution
at large strain stage, while the proposed model provides
good agreement with the experimentally measured curves.
The four preceding examples show that analysis of a rein-
forced concrete member under tensile loading using the
introduced approach is valid. The predictions of crack
loads, stabilized crack point, and the stress–elongation rela-
tion are satisfactory when compared with test results.

5.2. RC panels subject to biaxial tension

To verify the applicability of the introduced numerical
model in simulating the behavior of RC structures subject
to biaxial tension, such as containment walls of nuclear
power plants, correlation studies between analytical predic-
tions and experimental results are carried out for RC pan-
els tested in the Korea Atomic Energy Research Institute
(KAERI) [8]. Among the tested panels, representative four
panels of S40, S60, R2 and R3 are selected, and the speci-
Table 2
Loading ratios and material properties of biaxial tension panels

Panel Loading (rx:ry) ft Ec qx = qy

S40 2:1 2.1 28,328 0.0085 (0.0
S60 2:1 2.4 29,435

R2 1:1 2.1 27,477 0.0135
R3 1:1 0.0188

Unit: MPa, ft ¼ 0:33ðf 0
cÞ0:5.

a Effective reinforcement ratio.
men dimensions are 1500 mm · 1500 mm · 600 mm for
S40 and S60, 1000 mm · 1000 mm · 380 mm for R2, and
900 mm · 900 mm · 380 mm for R3. As shown in Fig. 10,
reinforcements are orthogonally placed, and the biaxial
tension loads directly act to the reinforcement. The loading
ratio and material properties of each panel are summarized
in Table 2.

Panels are modeled with a single four-node element
because of the uniformity of the strain and stress fields
(see Fig. 11). The analytical predictions of the proposed
model at four test panels are compared with the experimen-
tal average stress–strain relations obtained from LVDT
measurements. As shown in Fig. 12, the cracking stresses
and failure stresses from the numerical analyses agree fairly
well with those of the experimental results. Because the glo-
bal behavior is governed by the stress–strain relation in the
hoop direction, the existence of considerable stiffness at the
end of the calculation in the meridional direction can be
ignored. It can thus be concluded that the structural behav-
ior of orthogonally reinforced concrete panels subject to
biaxial tension is effectively simulated by the introduced
analytical model.

5.3. RC panels with inclined reinforcement and subject to

uniaxial tension

To testify the applicability of the proposed model
to RC panels with general reinforcement configurations,
fy Es1 Es2 db (mm)

105a) 410 205,744 0.02Es1 35

404 194,413 0.02Es1 29



10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

10000 2000 3000 4000 5000

STRAIN, [µ]

100

0

200

300

400

500

600

S
T

R
E

S
S

, [
M

P
a]

Hoop

Bare bar
Bare bar

Bare bar
Bare bar

Bare bar
Bare bar

Analysis
Experiment

Hoop

Analysis
Experiment

Meridional

Analysis
Experiment

Meridional

Analysis
Experiment

(a) S40 (b) S60

Hoop

Analysis
Experiment

Hoop

Analysis
Experiment

(c) R2 (d) R3 

Fig. 12. Average stress–strain curves of biaxial tension specimens.
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RC panels tested by Aoyagi [2], orthogonally reinforced
but loaded by in-plane forces inclined to the directions of
reinforcements are analyzed.

Because of a limitation in obtaining the experimental
data, only Nos. 22, 23 and 26 specimens are considered
in this paper. As shown in Fig. 13, the panel specimens
subject to uniaxial tensile stress were 1500 mm square
and 100 mm thick, and were identically reinforced in
both directions. Reinforcements were arranged at h = 0�,
22.5�, and 45� with respect to the applied loading direction.
The reinforcement ratios in both directions along defined
on a section perpendicular to the reinforcing bar are
1.183%. The material properties of concrete and steel used
in the analyses are: f 0

c ¼ 25 MPa, ft ¼ 0:33ðf 0
cÞ

0:5 MPa,
Ec = 2 · 104 MPa, fy = 371 MPa, and Es = 2 · 105 MPa.
Since the entire region represents the same stress condition,
only one four-node element is used, as in the previous
example.



Fig. 13. RC panel specimen with inclined reinforcement.
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Fig. 14 shows comparisons of measured average defor-
mations in the direction of the principal tensile force N1

with the results obtained by the proposed model for the
cases of a = 0�, 22.5�, and 45�. The deformations increase
in proportional to the deviation angle a and can also be
predicted fairly well by the analytical procedure proposed
in this paper. In advance, the average steel strain to the
applied load N1, experimentally obtained at the specimen
No. 23, is also compared with that calculated by the pro-
posed analytical model in Fig. 15. Even though the model
prediction in the j-direction relatively underestimates the
steel stiffness after cracking, it does not exert a great influ-
ence upon the overall response governed by the behavior of
steel in the i-direction.
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6. Conclusions

In this paper, an analytical model which can simulate
the post-cracking behavior of an RC tension member sub-
ject to biaxial tension is proposed. Instead of using the
assumed bond stress distribution, the concrete strain distri-
bution with nth order polynomial function is assumed and
the polynomial order is determined on the basis of the
energy balance before and after cracking. The effective con-
crete stress–strain relation at a limit state is also derived
from the average steel stress of the embedded steel bar.
In advance, the tension-stiffening model developed in the
uniaxial tension member is extended to the biaxial tension
member.

By adopting the proposed model, the post-cracking
behavior of RC structures subject to uniaxial or biaxial ten-
sion can be effectively analyzed without any additional
complex calculation. The efficiency and reliability of the
proposed model are demonstrated through application
examples of biaxially loaded RC panels.
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