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Phytochrome-interacting transcription factors PIF4
and PIF5 induce leaf senescence in Arabidopsis
Yasuhito Sakuraba1,*, Jinkil Jeong2,*, Min-Young Kang1, Junghyun Kim2, Nam-Chon Paek1 & Giltsu Choi2

Plants initiate senescence to shed photosynthetically inefficient leaves. Light deprivation

induces leaf senescence, which involves massive transcriptional reprogramming to dismantle

cellular components and remobilize nutrients. In darkness, intermittent pulses of red light can

inhibit senescence, likely via phytochromes. However, the precise molecular mechanisms

transducing the signals from light perception to the inhibition of senescence remain elusive.

Here, we show that in Arabidopsis, dark-induced senescence requires phytochrome-inter-

acting transcription factors PIF4 and PIF5 (PIF4/PIF5). ELF3 and phytochrome B inhibit

senescence by repressing PIF4/PIF5 at the transcriptional and post-translational levels,

respectively. PIF4/PIF5 act in the signalling pathways of two senescence-promoting

hormones, ethylene and abscisic acid, by directly activating expression of EIN3, ABI5 and EEL.

In turn, PIF4, PIF5, EIN3, ABI5 and EEL directly activate the expression of the major

senescence-promoting NAC transcription factor ORESARA1, thus forming multiple, coherent

feed-forward loops. Our results reveal how classical light signalling connects to senescence in

Arabidopsis.
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L
eaf senescence, the final stage of leaf development, actively
destabilizes intracellular organelles, including decomposition
of macromolecules, to relocate nutrients into developing

tissues or storage organs. Senescence occurs autonomously in an
age-dependent manner, controlled by an innate genetic pro-
gramme. However, unfavorable environmental stresses, such as
darkness, drought, high temperature, high salinity and pathogen
attacks, can also trigger senescence during leaf development1. For
example, light deprivation induces senescence in lower leaves that
are shaded by upper leaves2.

Molecular genetic studies using Arabidopsis thaliana have
identified many senescence-associated genes (SAGs), including
genes involved in hormone signalling, transcriptional regulation
and chlorophyll (Chl) catabolism1,3. The developmental and
environmental signals of senescence commonly activate
senescence-associated transcriptional factors (senTFs), which
modulate the expression of SAGs4. To date, transcriptome
analyses and molecular genetic studies, in Arabidopsis and
other plants, have identified many senTFs3,5. In particular, the
senTFs include a few plant-specific NAC genes, such as
ORESARA1 (ORE1, also known as NAC092)5, indicating that
the senescence-induced NAC transcription factors have
important roles in modulating senescence. ORE1 promotes
senescence by regulating the expression of hundreds of SAGs
that function in the breakdown of nucleic acids and proteins, and
the transport of sugar6,7. Treatment with ethylene or abscisic acid
(ABA) upregulates ORE1 expression8, suggesting a close
relationship between hormone signalling and ORE1. Among the
senescence-induced NACs, NAC-LIKE, ACTIVATED BY AP3/PI
(NAP/NAC029) and NAC016 also promote senescence, as
demonstrated by the delayed senescence phenotype of nap and
nac016 mutants9,10. In contrast, JUNGBRUNNEN 1 (JUB1/
NAC042) and VND-INTERACTING 2 (VNI2/NAC083) inhibit
leaf senescence11,12. Thus, these observations show that the
senescence-promoting and senescence-inhibiting NACs finely
tune the expression of SAGs in response to developmental and
environmental cues.

Plant hormones coordinate senescence in connection with
senTFs, and ensure that senescence proceeds in an orderly
fashion at the organismal level. Among plant hormones, ethylene
promotes senescence, as demonstrated by accelerated senescence
in ethylene-treated plants13 and delayed senescence in mutants
impaired in ethylene signalling, including mutants in the ethylene
signalling component ETHYLENE INSENSITIVE 2 (EIN2), the
transcription factor EIN3 and the ethylene receptor ETHYLENE
INSENSITIVE 1 (ETR1) (refs 14–16). ABA also induces
senescence rapidly17. Mutants of RECEPTOR-LIKE PROTEIN
KINASE 1 (RPK1) and SENESCENCE-ASSOCIATED GENE 113
(SAG113), which are insensitive to ABA, display delayed
senescence phenotypes18,19. Senescence is rapidly induced by
treatment with salicylic or jasmonic acids20,21, but is extremely
delayed by cytokinin treatment22. The exact molecular mecha-
nisms of how these hormone signals coordinate the ageing or
stress signals for leaf senescence are not fully understood.

Plant growth and development requires light23, and plants
require photoreceptors to adapt to ambient light conditions
throughout development. Red light has long been considered to
be a key negative signal for plant senescence, because pulses of
red light substantially delay dark-induced senescence (DIS) in a
few plant species, supposedly via phytochromes24 and a low ratio
of red/far-red light causes senescence in tobacco leaves25. Red
light activates and far-red light inactivates phytochromes;
darkness also causes slow inactivation of phytochromes23.
Photoactivated phytochromes move from the cytosol to the
nucleus, where they interact with and inactivate the negative
regulators of light signalling, resulting in massive transcriptome

changes23. In Arabidopsis, phyA and phyB regulate a wide range
of light responses such as seed germination, seedling
photomorphogenesis, hypocotyl gravitropism, shade avoidance
and flowering time23. Phytochromes inactivate phytochrome-
interacting bHLH transcription factors (PIFs), which inhibit light
responses in the dark26. At the molecular level, active
phytochromes directly interact with PIFs to induce their
detachment from DNA27, and promote their degradation by
the 26S proteasome28,29. PIFs are also regulated at the
transcriptional level; the EARLY FLOWERING 3 (ELF3)-ELF4-
LUX ARRHYTHMO (LUX) complex directly associates with the
promoters of PIF4 and PIF5 (PIF4/PIF5) and suppresses their
expression in the regulation of circadian responses30.

Although the regulatory function of the phytochrome-PIF
signalling module has been intensively investigated in the light-
responsive development of Arabidopsis seedlings, it is unknown if
this signalling module has a role in plant senescence. Here, we
show the molecular mechanism of how the phytochrome-PIF
signalling module activates leaf senescence in Arabidopsis. We
found that among the four PIFs, PIF4/PIF5 function as the
essential, central transcriptional activators of DIS and that ELF3
and red light-activated phyB repress the senescence-promoting
activity of PIF4/PIF5 at the transcriptional and post-translational
levels, respectively. The two PIFs activate the expression of ORE1
by forming multiple coherent feed-forward loops, together with
two distinct classes of transcription factors, EIN3 in ethylene
signalling and Group A bZIPs (ABA INSENSITIVE 5 (ABI5) and
ENHANCED EM LEVEL (EEL)) in ABA signalling.

Results
The Pfr form of phyB inhibits leaf senescence. Phytochromes
are red/far-red photoreceptors that can be interconverted to
active Pfr and inactive Pr forms by red and far-red light irra-
diation, respectively31. To examine the effect of phytochrome-
mediated light signalling on leaf senescence, 7-day-old
Arabidopsis wild-type (WT) seedlings were incubated for 10-
day in darkness (control), and in darkness with intermittent
pulses of red light (phyBon) or with pulses of red light followed by
far-red light (phyBoff) (Fig. 1a, left panel). WT cotyledons turned
yellow during dark incubation, a typical symptom of senescence
in plants. When the light pulses were given, we found that the
cotyledons stayed green in phyBon conditions but turned yellow
in phyBoff conditions (Fig. 1a, right panel), indicating that the Pfr
form of phyB inhibits senescence. To investigate the role of phyB
in senescence, we examined the phenotypes of 7-day-old
seedlings of phyB mutants and PHYB-overexpressing (PHYB-
OX) plants after 8 days of dark incubation (DDI). phyB mutants
senesced faster and PHYB-OX plants senesced slower than WT
(Fig. 1b,e,f). Similar to the seedling phenotypes, when attached or
detached leaves of 3-week-old plants were incubated in darkness
or individual leaves were covered with aluminium foil under long
day conditions, phyB mutants senesced faster and PHYB-OX
plants senesced slower than WT (Fig. 1c,d; Supplementary Fig. 1a
and Supplementary Methods). Consistent with their visible
phenotypes, phyB mutants had lower Chl levels, higher ion
leakage rates, higher expression of two senescence marker genes
(SENESCENCE 4 (SEN4) and SAG12), and lower expression of a
photosynthetic gene (LIGHT HARVESTING CHLOROPHYLL A/
B BINDING PROTEIN 1 (Lhcb1)) than WT seedlings or
individually covered leaves of adult plants during dark
incubation, while PHYB-OX had the opposite phenotypes, with
the exception of ion leakage rate (Fig. 1e–g, Supplementary
Fig. 1b–d). It appears that PHYB overexpression is not sufficient
to retard the breakdown of membrane integrity of seedlings
during DIS. In contrast, phyA mutants and PHYA-OX plants
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senesced at the same rate as WT (Supplementary Fig. 2). The
results indicate that phyB is the major photoreceptor signalling to
suppress senescence in Arabidopsis.

Mutations in PIF4 and PIF5 delay leaf senescence. We next
investigated which phyB signalling components regulate DIS in
Arabidopsis leaves. Previous work showed that pif quadruple
(pifQ) mutants (pif1 pif3 pif4 pif5) show a constitutive photo-
morphogenic phenotype when grown in darkness, and phyB
promotes light responses by repressing the activity of PIFs32,33.
We found that pifQ mutants maintained green cotyledons at 10
DDI, while WT cotyledons turned completely yellow (Fig. 2a),
indicating that PIFs promote senescence in light-deprived
conditions. To determine which PIFs promote senescence, we
examined the seedling phenotypes of four pif single mutants
during dark incubation. The pif1 and pif3 mutants turned yellow

at the same rate as WT, but pif4 and pif5 mutants, similar to pifQ
mutants, senesced slower than WT (Fig. 2b). We also observed a
similar delayed senescence pattern in the attached, detached or
individually covered leaves of pif4, pif5 and pifQ mutants
(Fig. 2c,d; Supplementary Fig. 3a). Consistent with their visible
phenotypes, the mutants had higher Chl levels, lower ion leakage
rates, lower expression of SEN4 and higher expression of Lhcb1
than WT (Supplementary Figs 3b,c, 4 and 5). In addition, pifQ
mutants maintained better-preserved chloroplast structure and
pif4 and pif5 mutants retained higher levels of photosystem
proteins (Supplementary Fig. 6 and Supplementary Methods).
Moreover, PIF4/PIF5 also promote age-dependent leaf
senescence, as pif4 and pif5 mutant leaves senesced slower than
WT leaves under long days (Supplementary Fig. 7), suggesting
that PIF4/PIF5 are the essential transcription factors that promote
leaf senescence under not only dark-induced, but also under
natural senescence conditions.
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Figure 1 | PhyB suppresses senescence. (a) Suppression of senescence by treatment with intermittent red light pulses during dark incubation. Light-grown

7-day-old WT (Col-0 ecotype) seedlings were transferred to darkness for 10 days without any light (continuous darkness), with intermittent red light

pulses (phyBon) or with red light pulses immediately followed by far-red light pulses (phyBoff). R and FR indicate red light and far-red light pulses,

respectively. (b–f) Suppression of senescence by phyB as judged by changes in leaf colour. Light-grown 7-day-old WT (Col-0), phyB (phyB-9) and PHYB-OX

seedlings (b), and attached (c) or detached leaves (d) of 3-week-old WT, phyB and PHYB-OX plants were transferred to darkness for the indicated

number of days. Total Chl levels (e) and ion leakage rates (f) in (b–d) were determined before and after dark treatment. (g) Expression levels of SEN4,

SAG12 and Lhcb1 of WT, phyB and PHYB-OX in 7-day-old seedlings or 3-week-old plants during dark incubation. For quantitative real-time PCR, the

relative expression levels were determined by normalizing to the transcript levels of GAPDH. PHYB-OX indicates the plants (Col) overexpressing PHYB

under the control of 35S promoter. Mutant information is listed in Supplementary Table 3. Data are means±s.d. of more than four independent

biological replicates. *Po0.05, **Po0.01 (Student’s t-test). DAG, day(s) after germination.
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To gauge if PIF4/PIF5 transcription factors become active
during dark incubation, we examined the expression of the PIF
target gene PHYTOCHROME-INTERACTING FACTOR 3-LIKE
1 (PIL1) during dark incubation, as PIFs directly regulate PIL1
expression34. PIL1 mRNA levels increased and plateaued at 2
DDI in WT (Fig. 2e). However, PIL1 mRNA levels did not rise in
pifQ mutants; in contrast, phyB mutants showed much higher
PIL1 mRNA levels than WT. The altered expression of PIL1 in
pifQ and phyB mutants provides indirect evidence that phyB
negatively regulates the activity of PIF4/PIF5 in the light; the
increased activity of PIF4/PIF5 in the prolonged darkness could
be caused by the increase of PIF4/PIF5 transcription, PIF4/PIF5
protein stability or both. To investigate this, we first examined the
expression levels of PIF4/PIF5 during dark incubation and found
that their expression in phyB mutants was almost the same as in
WT (Fig. 2f). This suggests that phyB does not regulate PIF4/PIF5
at the transcriptional level, but may possibly act at the post-
translational level. Indeed, we found that in PIF4-OX and PIF5-

OX plants, the levels of PIF4/PIF5 proteins increased in darkness
(Fig. 2g). Intermittent pulses of red light (PhyBon) inhibited
the increase of PIF4/PIF5 proteins, but pulses of red light
followed by far-red light (PhyBoff) did not, indicating that the
PIF4/PIF5 proteins are stabilized when phyB converts to the
inactive Pr form.

ELF3 inhibits leaf senescence by repressing PIF4/PIF5. A pre-
vious study showed that an ELF3–ELF4–LUX complex represses
the expression of PIF4/PIF5 in the evening phase30. Thus, we
examined if ELF3 inhibits leaf senescence by repressing PIF4/PIF5
transcription during dark incubation. We found that elf3
mutants, similar to PIF4-OX and PIF5-OX plants, senesced
much faster than WT in both detached and attached leaves of
adult plants (Fig. 3a; Supplementary Fig. 8a), while ELF3-OX
plants, similar to pif4 and pif5 mutants, exhibited delayed
senescence (Fig. 3b), as shown by Chl levels (Fig. 3c), ion
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leakage rates (Fig. 3d), the expression levels of SEN4 and Lhcb1
(Supplementary Fig. 5) and chloroplast structure and photo-
system protein levels (Supplementary Fig. 6). ELF3 functions
as one of the critical factors in light input into the circadian

clock and in the regulation of flowering time35,36; therefore, we
further examined whether senescence is also affected by
mutations of other regulators of the circadian clock, flowering
time and photomorphogenesis, such as CIRCADIAN-CLOCK
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(f) Repression of PIF4/PIF5 transcription by ELF3. The 7-day-old WT (black bars), elf3 mutants (red bars) and ELF3-OX plants (blue bars) were

transferred to darkness for 2 days. PIF4/PIF5 expression was normalized to GAPDH expression. (g,h) PIF4/PIF5 are epistatic to ELF3. Three-week-old plants
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Data are means±s.d. of at least four biological replicates. *Po0.05, **Po0.01 (Student’s t-test).
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ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL
(LHY), ELF4, LUX, FLAVIN-BINDING, KELCH REPEAT, F-BOX
1 (FKF1), CRYPTOCHROME 2 (CRY2), GIGANTEA (GI),
CONSTANS (CO), CONSTITUTIVE PHOTOMORPHOGENIC 1
(COP1) and DE-ETIOLATED 1 (DET1) (refs 36,37). We found
that none of the mutants for these regulators showed altered
senescence phenotypes during dark incubation (Supplementary
Fig. 8b). Although CRY1 was suggested to regulate PIF4/PIF5 for
shade avoidance responses38, we found that detached leaves of
cry1, cry2 and cry1 cry2 double mutants did not show an early or
delayed senescence phenotype during dark incubation
(Supplementary Fig. 8c). These results indicate that among the
components we tested, ELF3 functions as a unique negative
regulator of senescence induction.

ELF3 acts as a phyB signalling component in seedling
development35; we thus tested whether ELF3 inhibits sene-
scence through red light-activated phyB signalling. Although both
phyB and elf3 mutants senesced faster than WT, elf3 mutants still
responded to red light pulses comparable to WT, whereas phyB
mutants did not (Fig. 3e), indicating that ELF3 suppresses DIS
independent of phyB. Since the expression of PIF4/PIF5 increased
during dark incubation independent of phyB activity (Fig. 2f), we
measured the mRNA levels of PIF4/PIF5 in elf3 mutants and
ELF3-OX plants at 2 DDI (Fig. 3f). We found that the PIF4
expression was higher in elf3 mutants than in WT, and lower in
ELF3-OX plants. PIF5 expression also increased more in elf3
mutants. Furthermore, the pif4 elf3 and pif5 elf3 double mutants
senesced much later than WT, but similar to pif4 and pif5 single
mutants at 7 DDI (Fig. 3g,h), demonstrating that pif4 and pif5 are
epistatic to elf3. Consistent with this, ELF3-OX PIF4-OX plants
senesced faster than WT, but similar to PIF4-OX plants
(Supplementary Fig. 9). These results indicate that ELF3
represses PIF4/PIF5 transcription independent of phyB, while
the Pfr form of phyB destabilizes PIF4/PIF5 proteins.

PIF4/PIF5 promote ethylene and ABA signalling. To investi-
gate how PIF4/PIF5 promote DIS at the molecular level, we
performed microarray analysis and identified 677 differentially
expressed genes (DEGs) between WT and pifQ mutants at
2 DDI (WT/pifQ, twofold, false discovery rate (FDR)o0.05;
Fig. 4a, left circle). We compared the DEGs of WT/pifQ with
those of senescing WT at 2 DDI (DIS (2 days/0 days)) (Fig. 2a,
right circle) from previously reported microarray data39. We
found that the two sets share 132 DEGs (Po10� 72,
hypergeometric test), showing a high correlation coefficient
(R¼ 0.85; Supplementary Fig. 10a). The common DEGs have
enriched functional categories of ageing, leaf senescence, photo-
synthesis, Chl metabolism and light response (Supplementary
Fig. 10b). Moreover, although the changes were less than twofold,
Gene Set Enrichment Analysis (GSEA, see Methods) showed that
the non-shared DEGs of senescing WT also significantly
correlated with the changes in pifQ mutants (Supplementary
Fig. 10c). The results indicate that PIF4/PIF5 function as the
major regulators of SAG expression in senescing leaves during
dark incubation.

To further explore how PIF4/PIF5 regulate the expression of
SAGs, we tested whether the 132 shared DEGs include direct
targets of PIF4/PIF5 transcription factors. Thirty two of the
shared DEGs are PIF-direct targets (P¼ 0.0062, hypergeometric
test), according to previously reported PIF4/PIF5 chromatin
immunoprecipitation (ChIP)-seq data34,40. Their promoters are
enriched with the G-box element (CACGTG), a typical binding
motif for PIF transcription factors34,40–43 (Fig. 4b, upper panel).
In contrast, the promoters of the indirectly regulated DEGs are
enriched with ABRE-like elements (YACGT), the known binding

sites of bZIP transcription factors, such as the positive ABA
signalling component ABI544 (Fig. 4b, lower panel). These results
suggest that PIF4/PIF5 directly activate the expression of many
SAGs and also indirectly function through ABA signalling.

Ethylene signalling also promotes senescence13–16; we thus
examined whether PIF4/PIF5 activate both ABA and ethylene
signalling for inducing senescence. The GSEA indicated that both
ABA- and ethylene-induced genes are downregulated in pifQ
mutants at 2 DDI and are upregulated in senescing WT
(Supplementary Table 1). The suppression of ABA and ethylene
signalling in pifQ mutants might be partly due to the decreased
expression of EIN3 (a positive ethylene signalling component)
and the Group A bZIP transcription factors ABI5 and EEL
(Fig. 4c,d,h–j), which are direct targets of PIF4/PIF5, as shown by
ChIP assays (Fig. 4d). Consistent with the decreased expression of
ABI5, EEL and EIN3 in pifQ mutants, the bZIP- and EIN3-
induced genes, which were identified from previously reported
microarray data (see Methods), were significantly downregulated
in pifQ mutants and upregulated in senescing WT
(Supplementary Table 1). We found that abi5, eel and ein3
mutations delayed senescence, and abi5 and eel mutations
showed additive effects (Fig. 4e–g), further supporting the
hypothesis that decreased expression of ABI5, EEL and EIN3 is
closely associated with delayed senescence in pifQ mutants. Since
ELF3 delays senescence by repressing the transcription of PIF4/
PIF5 (Fig. 3f), ELF3 should repress the expression of ABI5, EEL
and EIN3 during dark incubation. Indeed, their mRNA
expression was severely downregulated in ELF3-OX plants and
upregulated in elf3 mutants (Fig. 4h–j). These results indicate
that PIF4/PIF5 regulate senescence partly through the two bZIPs
and EIN3.

PIF4/PIF5 activate ORE1 through multiple feed-forward loops.
We next investigated if PIF4, PIF5 and their direct target tran-
scription factors (ABI5, EEL and EIN3) jointly affect the
expression of known senescence-promoting regulators. To date,
3,744 senescence-associated loci in Arabidopsis have been cura-
ted3, and 89 loci are known to promote senescence. Among the 89
senescence-promoting genes3 (Supplementary Data 1), we found
that ORE1, encoding a key senescence-promoting NAC
transcription factor, was commonly induced by all three groups
of transcription factors (Fig. 5a). ORE1 expression was
downregulated in ELF3-OX plants and pifQ, abi5, eel and ein3
mutants, and upregulated in elf3 mutants and PIF4-OX plants
(Fig. 5b), indicating that ORE1 is a target senTF acting
downstream of ELF3, PIF4, PIF5, ABI5, EEL and EIN3.
Consistent with this, ore1 mutants, similar to phyB and pif4
mutants, did not respond to red light pulse treatment during dark
incubation (Fig. 5c,d). These results indicate that ORE1 integrates
phyB-mediated light signalling to promote senescence in light-
deprived conditions.

We found that the ORE1 promoter harbours three potential
PIF binding sites (G-box motifs), several bZIP binding sites
(ABRE motifs) and an EIN3 binding site (Fig. 5e), suggesting that
ORE1 is a direct target of not only PIF4/PIF5 but also of bZIPs
and EIN3. To examine whether PIF4, PIF5, ABI5, EEL and EIN3
directly activate ORE1 transcription, we next performed ChIP
assays and found that all of the tested TFs bind to the ORE1
promoter (Fig. 5f). Collectively, the direct activation of ORE1
transcription by PIF4/PIF5 and by PIF4/PIF5-targeted trans-
cription factors (ABI5, EEL and EIN3) indicates that these
transcription factors establish multiple coherent feed-forward
regulatory loops to induce leaf senescence; PIF4/PIF5 directly
activate the expression of ABI5, EEL and EIN3, and in turn, PIF4,
PIF5, ABI5, EEL and EIN3 directly activate ORE1 transcription.
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study) and DIS genes (previous microarray data39). Light-grown 7-day-old WTand pifQ seedlings were transferred to darkness for 2 days (WT versus pifQ),
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direct target genes retrieved from the previous ChIP-seq database34,40. (b) Enrichment of the G-box motifs in the PIF-direct target promoters and the

ABRE-like element in the PIF-indirect target promoters, identified by the MEME software using 500 bp promoter sequences. (c) Heat map showing the

expression of EIN3, EIL1 and group A bZIPs in the microarray analysis from this study (WT/pifQ) and two independent sets of DIS microarray data from

previous studies39,69. Black circles indicate the PIF4/PIF5-direct target genes according to previous ChIP-seq analyses34,40. The scale bar (bottom)

indicates fold changes as log2 values. The ABF2 probe is absent in the DIS microarray (Affymetrix). (d) Direct binding of PIF4/PIF5 to the promoters of

ABI5, EEL and EIN3 by ChIP assays. Values were normalized to the values for PP2A as a non-binding control. Data are means±s.d. of two biological

replicates. (e–g) Delayed senescence of abi5, eel, abi5 eel, ein3 and pifQ mutants. Light-grown 7-day-old seedlings were transferred to darkness for 10 days

(e). Total Chl levels were measured at 10 DDI (f). Data are means±s.d. of at least four biological replicates. Detached leaves of 3-week-old plants were

transferred to darkness and photographed at 7 DDI (g). (h–j) Regulation of ABI5, EEL and EIN3 expression by ELF3 and PIF4/5. The mRNA levels were

determined by quantitative real-time PCR using light-grown 7-day-old seedlings transferred to darkness for 0, 2 and 4 DDI. GAPDH was used as a control.

DDI indicates day(s) of dark incubation. Data are means±s.d. of four biological replicates. *Po0.05, **Po0.01 (Student’s t-test).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5636 ARTICLE

NATURE COMMUNICATIONS | 5:4636 | DOI: 10.1038/ncomms5636 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


ABI5 and EEL directly promote Chl degradation. PIF4, PIF5
and their direct target transcription factors (EIN3 and bZIPs)
may have other senescence-related targets in addition to ORE1.
Microarray data analysis indicated that among the SAGs, PIF4,
PIF5 and bZIPs induce four Chl catabolism-associated genes,
including STAYGREEN 1 (SGR1, also known as NYE1) and NON-
YELLOW COLORING 1 (NYC1) (refs 45,46) (Supplementary
Table 2). SGR1 and NYC1 expression was downregulated in
ELF3-OX plants and pifQ mutants, and upregulated in elf3
mutants and PIF4-OX plants (Fig. 6a). We also found the bZIP
binding motif (ABRE motif) in the promoters of SGR1 and
NYC1 (Fig. 6b). Consistent with the presence of ABREs, ChIP
assays revealed that ABI5 and EEL directly bind to the promoters
of SGR1 and NYC1 (Fig. 6c) and the expression levels of
SGR1 and NYC1 were significantly downregulated in abi5 eel
double mutants during DIS (Fig. 6d). Although the promoters
of SGR1 and NYC1 also contain a putative PIF binding motif
(G-box motif; Supplementary Fig. 11a), PIF4/PIF5 did not
bind to the G-box motifs of SGR1 and NYC1 (Supplementary
Fig. 11b). The results indicate that PIF4/PIF5 indirectly
promote Chl degradation through their target bZIPs during leaf
senescence.

Discussion
Light deprivation initiates leaf senescence in plants. In this study,
we reveal the molecular genetic pathway by which light
deprivation accelerates senescence, via increased levels of PIF4/
PIF5 mRNAs and PIF4/PIF5 proteins, which are negatively
regulated by ELF3 and phyB, respectively (Fig. 7). The increased
activity of PIF4/PIF5 promotes the expression of ORE1 not only
by directly binding to its promoter but also indirectly through
EIN3 and bZIPs (ABI5 and EEL). These TFs, in turn, activate the
expression of hundreds of SAGs that mediate the highly ordered
decomposition of cellular components, such as Chls and
photosynthetic proteins in chloroplasts, finally leading to leaf
senescence1,3,4.

We used plate-grown young seedlings rather than adult plants
for the majority of the senescence assays, because it is easier to
synchronize the growth of seedlings and to reduce unknown
variation caused by environmental fluctuations. However, as we
have shown, phyB and elf3 mutants senesce early, while pif4, pif5
and pifQ mutants senesce later, not only in seedlings but also in
detached, attached or individually covered leaves of adult
plants, suggesting that the senescence pathways identified in
seedlings are likely important for senescence at other stages of
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development. Overall, our data show that PIF4/PIF5 promote
senescence throughout development, while phyB and ELF3
repress PIF4/PIF5 to prevent precocious senescence in the
presence of light. Our study revealed the role of PIF4/PIF5 in
senescence in relation to light signalling, and other works showed
that PIF4 also mediates high temperature signalling to promote
hypocotyl growth47. Thus, additional work is required to
investigate whether other signals from abiotic stresses, such as
high temperature, also regulate senescence through PIF4/PIF5.

The identified pathway links light signalling to senescence and
consists of multiple coherent feed-forward loops, which likely
function to make the pathway robust. In conditions with
sufficient light, ELF3 and phyB convey light information to
PIF4/PIF5, resulting in the reduction of PIF4/PIF5 mRNA
and protein levels (Figs 2g and 3f). Under prolonged darkness,
however, the process reverses and PIF4/PIF5 mRNA and protein
levels increase. The increased PIF4/PIF5 activate the expression of
EIN3 and two bZIPs (ABI5 and EEL) by directly associating with
their promoters (Fig. 4c,d,h–j), thus affecting regulators of
ethylene and ABA signalling, respectively. In turn, the increased
EIN3 and bZIPs directly activate the expression of ORE1 (Fig. 5f),
a major senescence-promoting NAC transcription factor that
regulates hundreds of SAGs. Notably, not only EIN3 and bZIPs
but also PIF4/PIF5 directly bind to the ORE1 promoter to activate
its expression (Fig. 5f), indicating that PIF4/PIF5 form coherent
feed-forward loops to activate the expression of ORE1 (Fig. 7).
Such coherent feed-forward loops make a pathway less prone to
being disturbed by ephemeral environmental fluctuations48.

Similar coherent feed-forward loops between EIN2 and ORE1
were previously proposed5; EIN2 activates the expression of ORE1
both by repressing the expression of miR164, which cleaves the
ORE1 mRNA, and by a miR164-independent pathway. EIN2 also
inhibits the expression of miR164 through EIN3, which directly
binds to the miR164 promoter17. Since we showed that EIN3
directly binds to the ORE1 promoter to activate its expression
(Fig. 5b,f), these results suggest that a previously proposed
miR164-independent pathway likely functions through EIN3 and
thus EIN3, miR164, and ORE1 form a coherent feed-forward loop.
Such a loop implies that the cascade of coherent feed-forward
loops regulates the expression of ORE1 during senescence. We
note that EIN3 also directly binds to the promoter of NAP, a
major senescence-promoting NAC transcription factor and one of
the 89 senescence-promoting genes3 (Supplementary Data 1), and
induces NAP transcription49, indicating that EIN3 activates the
expression of both ORE1 and NAP.

Our study showed that ELF3 represses senescence indepen-
dently of its previously reported roles in light signalling. A
previous study showed that ELF3 interacts with phyB to regulate
the phyB signal transduction pathway35. Although ELF3 represses
senescence as phyB does, the elf3 mutants still respond to red
light pulse treatment similar to WT, indicating that ELF3
regulates senescence independent of phyB activity35,50. The fact
that ELF3 represses the expression of PIF4/PIF5 mRNA and
phyB promotes the degradation of PIF4/PIF5 proteins further
supports the independent roles of ELF3 and phyB in senescence
(Figs 2g and 3f). Our study also suggests that ELF3 represses
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senescence independently of its roles in circadian clock, flowering
time and diurnal control of hypocotyl elongation. First, ELF3 is
required to maintain the circadian clock under continuous light51

and its mRNA expression is directly repressed by CCA1 for the
regulation of the diurnal control of hypocotyl length and
flowering time52. Besides elf3 mutants, however, the circadian-
clock mutants including cca1, lhy1 and det1 do not exhibit an
altered senescence phenotype in darkness (Supplementary
Fig. 8b), indicating that the dysfunction of the circadian clock
per se does not cause the early senescence symptoms of elf3
mutants. Second, ELF3 interacts with COP1, which allows COP1
to destabilize GI downstream of CRY2 to control flowering
time36. However, cop1, gi, fkf1, co and cry2 mutants do not show
any senescence-associated phenotype in darkness, suggesting that
the flowering-time defect in elf3 mutants is irrelevant to the early
senescence in darkness. Third, ELF3 forms an evening complex
with ELF4 and LUX and represses the expression of PIF4/PIF5
mRNAs for diurnal control of hypocotyl elongation30. Unlike the
elf3 mutants, elf4 and lux mutants senesce at the same rate as WT
in darkness, indicating that ELF3 acts as the transcription
repressor of PIF4/PIF5 in the absence of ELF4 or LUX. Taken
together, our data suggest that the inhibition of senescence
represents a novel function of ELF3.

The increase of PIF4/PIF5 expression independent of phyB
(Fig. 2f) raises the possibility that other light signalling
components also suppress senescence by repressing the expres-
sion of PIF4/PIF5 in connection with ELF3. A previous study
showed that ELF3 is destabilized when light-grown seedlings were
transferred to darkness35. It is not known, however, which light
signalling components regulate ELF3 stability. A few possibilities
exist. First, the inactivation of other phytochromes might be
responsible for the destabilization of ELF3, which leads to the
upregulation of PIF4/PIF5 expression in the dark, but the role of
phyA in senescence remains inconclusive. We showed that the
Arabidopsis phyA mutants do not show any senescence
phenotype in our conditions (Supplementary Fig. 2). Unlike our
analysis, however, other studies have reported two contradictory
roles of phyA in senescence: the overexpression of oat phyA
delayed senescence in tobacco53, whereas the pea phyA mutants

exhibited delayed senescence54. These contrasting results could be
due to the different senescence conditions (dark-induced versus
natural senescence) or different plant species (Arabidopsis versus
tobacco versus pea). Alternatively, phyA proteins from different
plant species might have different functions. For example,
Arabidopsis phyA does not mediate the red light-low fluence
response (LFR)55, whereas monocot phyA mediates the red light-
LFR even when it is expressed in Arabidopsis56. Thus, the
suppression of senescence by oat phyA could be due to its unique
ability to mediate the LFR, a function usually reserved for phyB57.
The delayed, rather than early, senescence of pea phyA mutants
also excludes pea phyA as the repressor of PIF4/PIF5 mRNA
expression in the dark. Currently, the role of three minor
phytochromes (phyC, phyD and phyE) in senescence remains to
be examined. Second, the activation of the expression of
PIF4/PIF5 during senescence might require the absence of
blue light, rather than presence of red light. Previous studies
showed that blue light pulses inhibit DIS in papaya58. In
soybean, CRY2a interacts with and inhibits a CRY-interacting
CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-
HELIX 1 (CIB1) transcription factor that promotes leaf
senescence by directly upregulating the expression of WRKY53
(ref. 59). Since low red to far-red ratio also promotes leaf
senescence in soybean60, both phytochrome and cryptochrome
signals can delay leaf senescence in soybean. However, we found
that cryptochrome signalling does not regulate senescence in
Arabidopsis (Supplementary Fig. 8c). Since blue light is perceived
not only by CRY but also by phototropins and Light–Oxygen–
Voltage-sensing-domain containing F-box proteins23, our data do
not exclude the possibility that other blue light receptors repress
senescence through ELF3. Further investigation is needed to
determine which light signals regulate the expression of PIF4/
PIF5 mRNA through ELF3 during senescence.

The inclusion of ABI5 and EIN3 in the PIF4/PIF5-initiated
feed-forward loops suggests that the identified regulatory loops
integrate signals from light, abiotic stress and ageing, to regulate
senescence (Fig. 7). Previous studies showed that ABA signalling
increases the activity of ABI5 and its homologues, Group A
bZIPs, in response to abiotic stresses, both at the transcriptional
and post-transcriptional levels44,61 (AtGenExpress; abiotic stress).
Activated ABI5 and its homologues trigger a subset of ABA
responses, including senescence (Fig. 4e–g), seedling growth
arrest and abiotic stress tolerance61,62. Our data indicate that
PIF4/PIF5 also activate the expression of ABI5 and its
homologues at the transcriptional level, by directly binding to
their promoters (Fig. 4c,d,h–j). Light decreases the activity of
PIF4/PIF5; this finding indicates that light and abiotic stresses
antagonistically regulate the expression of ABI5 and its
homologues. This finding also indicates that the integration of
light and abiotic stress signalling determines the output of the
PIF4/PIF5-initiated coherent feed-forward loops. Similarly, the
PIF4/PIF5-initiated coherent feed-forward loops likely integrate
developmental stage signals through EIN3, as shown by a gradual
increase of EIN3 expression during ageing, and the consequent
promotion of age-dependent senescence16. In conclusion,
identification of EIN3 and ABI5 as constituents of the loops in
our model suggests that light signalling (represented by PIF4/
PIF5) interacts with abiotic stress signalling (ABI5 and EEL)62

and developmental age signalling (EIN3)16 to regulate senescence
(Fig. 7). The interplay among these signals provides the
mechanism by which plants decide when to senesce in response
to ageing and dynamic environmental conditions.

Methods
Plant materials and growth conditions. Arabidopsis thaliana plants were grown
at 22 to 24 �C under long days (16-h light/8-h dark) in a growth room equipped
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Figure 7 | A proposed model for PIF4/PIF5-induced leaf senescence.

PIF4/PIF5 promote DIS by forming multiple coherent feed-forward

loops with bZIPs (ABI5 and EEL), EIN3 and ORE1, all of which are inhibited by

phyB and ELF3.
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with cool-white fluorescent light (90 to 100mmol m� 2 s� 1) for general growth and
seed harvest. For phenotypic analysis, surface-sterilized seeds were plated on
Murashige and Skoog (MS) agar plates (half-strength MS, 0.8% phytoagar and
0.05% MES, pH 5.7) and stratified for 3 days at 4 �C in darkness before being
transferred to the growth room. For DIS, 7-day-old seedlings, detached (4th or 5th)
rosette leaves of 3-week-old plants with 3 mM MES buffer (pH 5.8) or whole plants
were incubated in complete darkness for the indicated periods. For quantitative
reverse transcriptase PCR and dark treatment with or without light pulse
irradiance, 7-day-old seedlings grown on MS agar plates grown under continuous
light (100mmol m� 2 s� 1) were incubated in darkness with or without 5 min
of red light (13mmol m� 2 s� 1) followed by darkness or 5 min of far-red light
(3.2mmol m� 2 s� 1) for the indicated periods.

Plasmid construction and plant transformation. For Arabidopsis transgenic
plants expressing genes under the control of the 35S promoter, the full-length
PHYB, PIF4, PIF5, ABI5, EEL and EIN3 cDNAs were amplified with specific pri-
mers (Supplementary Table 4), cloned into the binary vectors, pBI121 (PIF4 and
PIF5) and pCAMBIA1300, bearing either GFP (PHYB), Myc (PIF4 and PIF5) or
FLAG (ABI5, EEL and EIN3) tag, and transformed into WT (Col-0) by Agro-
bacterium-mediated transformation. 35S:FLAG-ABI5 and 35S:FLAG-EEL are
hypersensitive to ABA and 35S:EIN3-FLAG is hypersensitive to ethylene
(Supplementary Fig. 12).

Measurement of Chl pigments. For measurement of total Chl concentration, Chl
pigments were extracted with 80% ice-cold acetone from leaf tissues of plants
grown under long days. The Chl concentration was determined using an ultra-
violet/visible spectrophotometer according to the previous method63.

Reverse transcription and quantitative real-time PCR. Total RNA from plant
tissues was isolated using the Total RNA Extraction Kit (iNtRON Biotechnology,
Korea). For RT, first-strand cDNAs were prepared with 5 mg of total RNA using
M-MLV reverse transcriptase and oligo(dT)15 primer (Promega) and diluted to
100ml with water. Gene expression levels were determined by qPCR analysis.
Twenty microlitres of qPCR mixture contained 2 ml of first-strand cDNAs, 10 ml of
2X QuantiTect SYBR Green I Master (Roche) and 0.25 mM of the forward and
reverse primers for each gene. The qPCR analysis was performed using the Light
Cycler 2.0 (Roche Diagnostics). Relative expression levels of each gene were nor-
malized to mRNA levels of glyceraldehyde phosphate dehydrogenase (GADPH) as
a loading control. The gene-specific primers for qPCR are listed in Supplementary
Table 4.

Measurement of ion leakage rate. To measure ion leakage rate caused by DIS,
approximately 10 whole seedlings or 10 rosette leaves in each condition were
placed in a tube with 6 ml of 0.4 M mannitol solution. The tubes were placed at
room temperature for 3 h with gentle shaking. Conductivity of incubated solution
was measured before and after boiling for 10 min, using an electroconductivity
metre (CON6 METRE, LaMOTTE Co., USA). The ion leakage rate was calculated
by the ratio of initial to total conductivity.

SDS-PAGE and immunoblot analysis. PIF4-Myc and PIF5-Myc seedlings were
collected and immediately frozen in liquid nitrogen under a dim green light. The
seedlings were then ground in liquid nitrogen and homogenized in denaturing
buffer (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 8.0) by vigorous vor-
texing. The debris was removed by centrifugation at 20,000 g for 10 min at 4 �C. For
immunoblot analysis, the supernatants were separated on an 8% SDS-poly-
acrylamide gel, and the proteins were transferred to a nitrocellulose membrane
(Hybond ECL, Amersham) using transfer buffer (5.8 g l� 1 Tris base, 29 g l� 1

glycine, 20% methanol and 0.01% SDS). For protein detection, rabbit polyclonal
anti-Myc antibody (Santa Cruz, USA) with 1/1,000 dilution for PIF4-Myc and
PIF5-Myc and mouse monoclonal anti-tubulin antibody (Sigma, USA) with 1/
10,000 dilution for a loading control in PBS buffer containing 0.05% Tween 20
were used. Blots were washed three times with the same buffer and then incubated
with appropriate secondary antibodies. After washing three times, the horseradish
peroxidase activity of secondary antibodies was detected using an ECL detection kit
(AbFRONTIER, Korea). Uncropped blot images of Fig. 2g are shown in
Supplementary Fig. 13.

Microarray analysis. For microarray analysis, 7-day-old light-grown seedlings of
WT and pifQ mutants were incubated in the dark for 2 days before RNA extrac-
tion. Total RNA was extracted using the Spectrum Plant Total RNA kit (Sigma-
Aldrich, USA). Three biological replicates of WT and pifQ mutants were grown
and sampled for RNA purification. Two mg of total RNA was used for probe
synthesis. The Agilent Arabidopsis Genome 44 K chip (version 4) was used. The
analysis of microarray data was done in R version 2.15.0. The limma package was
used for background correction and for normalization within arrays and between
arrays64. Then, a linear model was fitted using lmFit followed by statistical
calculation using ebayes. FDR less than 0.05 was applied to identify DEGs.

Microarray data were deposited in the NCBI Gene Expression Omnibus (GEO)
with accession number GSE52646. For the identification of DEGs of WT DIS and
hormonal transcription factor-activated genes, raw data deposited in NCBI GEO
and EMBL-EBI were obtained and processed as described above.

ChIP assay. The plants overexpressing PIF4-Myc, PIF5-Myc, ABI5-FLAG, EEL-
FLAG and EIN3-FLAG under the cauliflower mosaic virus 35S promoter (see
Plasmid construction and plant transformation) were grown in continuous white
light for 7 days and then transferred to darkness for 3 days before cross-linking for
20 min with 1% formaldehyde under vacuum. Chromatin complexes were isolated
and sonicated with slight modification43. Anti-Myc monoclonal antibody (mouse,
Cell Signaling) or anti-FLAG polyclonal antibody (rabbit, Sigma), and Protein A
agarose/salmon sperm DNA (Millipore) were used for immunoprecipitation. After
reverse cross-linking and protein digestion, DNA was purified by QIAquick PCR
Purification Kit (Qiagen).

GSEA. GSEA65 was conducted with Software GSEA v2.08 (Broad Institute, MIT)
according to the online user guide (http://www.broadinstitute.org/gsea). ABA and
ACC-responsive gene sets were generated based on previously processed
microarray data66. Sets of genes activated by ABI5, ABF2/3/4 and EIN3 were
identified from public microarray data from previous studies67,68 and from NCBI
GEO deposition (GSE21762) with twofold criteria (FDRo0.05) as described in
Microarray Analysis. The set of genes activated by ABI5 was further selected for
genes whose expression is induced by ABA treatment (AtGenExpress). Parameters
were set as gene_set for permutation type, 1,500 for maximal size of gene set and
default for other parameters.
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