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For any N � 1 and sufficiently small ε > 0, we find a positive solution of a nonlinear
elliptic equation

∆u = ε2(V (x)u − f(u)), x ∈ R
N ,

when lim|x|→∞ V (x) = m > 0 and some optimal conditions on f are satisfied.
Furthermore, we investigate the asymptotic behaviour of the solution as ε → 0.

1. Introduction

Consider a nonlinear eigenvalue problem

−∆u = λ(u − g(x, u)) in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a domain in R
N , λ ∈ R, g ∈ C1(Ω × R, R), and limu→0 g(x, u)/u = 0

uniformly for x ∈ Ω. For any λ ∈ R, u ≡ 0 is a trivial solution of (1.1).
Let Ω be a bounded domain of R

N and let λk(Ω) > 0 be the kth eigenvalue of

−∆u = λu in Ω, u = 0 on ∂Ω. (1.2)

It is a classical result that (λk(Ω), 0) is a bifurcation point of problem (1.1), that
is, any neighbourhood of (λk(Ω), 0) in R × H1

0 (Ω) contains a non-trivial solution
of (1.1). In particular, when k = 1, there exist smooth functions λ : (−δ, δ) → R and
ϕ : (−δ, δ) → H1

0 (Ω) such that lims→0 ϕ(s)/s = u1, a first eigenfunction of (1.2),
and (λ(s), ϕ(s)) is a solution of (1.1) (see [14]).

Stuart initially studied a case Ω = R
N , N � 3, in [33], typically when g(x, u) =

h(x)|u|p−1u, h(x) � 0, lim|x|→∞ h(x) = 0, lim inf |x|→∞ h(x)(1 + |x|)t > 0 for t ∈
(0, 2) and p ∈ (1, (N +2−2t)/(N −2)). In this case, the result was that a bifurcation
occurs from infinity at λ = 0, that is, there exist solutions {(vl, λl)}∞

l=1 of (1.1) such
that liml→∞ ‖∇vl‖L2(RN ) = ∞ and liml→∞ λl = 0. Thus, a bifurcation from infinity
occurs at the lowest point of the essential spectrum [0,∞) of −∆ on R

N without
eigenvalues. The proof, based on a constraint minimization, states that λl < 0 and
ul > 0 or ul < 0. He obtained a similar result for the similar type of problem

−∆u = λu − g(x, u) in R
N (1.3)

(see also [6,24,34,35] for further studies on the bifurcation problem, and the survey
paper [36]).
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On the other hand, Ambrosetti and Badiale in [2] applied the Lyapunov–Schmidt
reduction method to the bifurcation problem

v′′ − ε2v + h(x)|v|p−1v = 0, x ∈ R,

lim
|x|→∞

v(x) = 0.

}
(1.4)

They showed, amongst other things, that if there exists L > 0 such that

lim
|x|→∞

h(x) = L, h(x) − L ∈ L1(R),
∫

R

(h(x) − L) dx �= 0

and 1 < p < 5, then (1.4) has a family of positive solutions bifurcating from the
trivial solutions for small ε > 0. The same result holds in higher dimensions if p ∈
(1, (N +2)/(N − 2)) (see [4,5]). For p � 5, there exist non-trivial solutions of (1.4),
but they do not bifurcate from the trivial one. Note that, by a transformation
u(x) = ε−2/(p−1)v(x/ε), (1.4) is transformed to

u′′ − u + h(x/ε)|u|p−1u = 0, x ∈ R,

lim
|x|→∞

u(x) = 0.

}
(1.5)

For any R > 0, limε→0 h(x/ε) = L = lim|x|→∞ h(x) uniformly on R
N \ B(0, R).

Thus, we have a limiting problem

u′′ − u + L|u|p−1u = 0, x ∈ R,

lim
|x|→∞

u(x) = 0.

}
(1.6)

Indeed, Ambrosetti and Badiale [2] constructed a solution of (1.5) as a perturbation
of a solution of (1.6) for small ε > 0. Here we note that via a transformation
w(x) = u(εx), equation (1.5) is transformed

1
ε2 w′′ − w + h(x)|w|p−1w = 0, x ∈ R,

lim
|x|→∞

w(x) = 0.

⎫⎪⎬
⎪⎭ (1.7)

In this paper we study a similar type of equation:

∆u = ε2(V (x)u − f(u)), u > 0, u ∈ H1(RN ). (1.8)

When ε > 0 is very large this corresponds to an equation for semiclassical standing
waves of nonlinear Schrödinger equations. In this case, following work based on the
Lyapunov–Schmidt reduction [19] and that based on a variational approach [31],
there have been numerous further results to problem (1.8) (see [3, 10, 11, 15, 16, 18,
21,25] and references therein). Note that, by a transformation v(x) = u(x/ε), (1.8)
is transformed to

∆v − V (x/ε)v + f(v) = 0, v > 0, v ∈ H1(RN ). (1.9)

Although two opposite cases 0 < ε � 1 and 1 � ε look quite contrastive, they
share the same types of limiting equations

∆U − cU + f(U) = 0, U > 0 in R
N , lim

|x|→∞
U(x) = 0, (1.10)
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where c is a positive constant. Our motivation comes from a classical result of
Berestycki and Lions [7] which notes the existence of a least energy solution of (1.10)
under some optimal conditions ((F1)–(F3) below) on f . Thus, it is desirable to
construct a solution of (1.8) for small ε > 0 under the optimal conditions. Such
a construction, for ε > 0 sufficiently large, was successfully carried out using a
variational method in [10–12].

In addition to showing the existence of a solution to problem (1.8), we are con-
cerned with the asymptotic behaviour of the solution. To see a fine asymptotic
behaviour of a solution as ε → 0, we need to know the shape of a least energy
solution of limiting problem (1.10). If f is C1, any solution of (1.10) is radially
symmetric up to a translation and strictly decreasing. When f is just continuous,
the symmetry and monotonicity of a least energy solution is proven in [13].

In § 2, we further prove that the radially symmetric solution is strictly decreasing;
this property is essential to see a fine asymptotic behaviour of a solution as ε → 0.
It seems that the strict decreasing property of a radially symmetric solution cannot
be derived by the rearrangement argument or maximum principles; interestingly we
could derive the property from a generalized Pohozaev identity. Furthermore, when
we try to see a fine asymptotic behaviour of a solution uε without monotonicity
of f(t)/t, we have particular difficulty for the cases N = 1, 2 in contrast with the
case N � 3. For some singularly perturbed nonlinear problems in bounded domain
(see original papers [26–28] and some recent works [8, 9, 17]), it remains to show
the asymptotic behaviour of a maximum point for a least energy solution under
conditions (F1)–(F3) when N = 2. We believe that the argument in this paper for
N = 1, 2 can be applied to the singularly perturbed problems.

We assume the following conditions for the potential function V .

(V1) V ∈ C(RN , R).

(V2) lim|x|→∞ V (x) = m, m > 0.

(V3) V − m ∈ L1(RN ) and ∫
RN

(V (x) − m) dx < 0.

We also assume that f : R → R is continuous and satisfies the following.

(F1) limt→0+ f(t)/t = 0.

(F2) If N � 3, lim supt→∞ f(t)/tp < ∞ for some p ∈ (1, (N + 2)/(N − 2)) and if
N = 2, for any α > 0, there exists Cα > 0 such that |f(t)| � Cα exp(αt2) for
all t � 0.

(F3) There exists T > 0 such that if N � 2, 1
2mT 2 < F (T ) and if N = 1,

1
2mt2 > F (t) for 0 < t < T , 1

2mT 2 = F (T ) and mT < f(T ), where

F (t) =
∫ t

0
f(s) ds.

Now we state our main theorem, showing the existence of solutions of (1.8) for
small ε > 0.
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Theorem 1.1. Assume that hypotheses (V1)–(V3), (F1)–(F3) hold. Then for suf-
ficiently small ε > 0, there exists a positive solution wε of (1.8) such that, after a
transformation uε(x) ≡ wε(x/ε), uε converges (up to a subsequence) uniformly to
a radially symmetric least energy solution U of

∆u − mu + f(u) = 0, u > 0, lim
|x|→∞

u(x) = 0 (1.11)

satisfying U(0) = max{Ũ(0) | Ũ solves (1.11)}. Moreover, for a maximum point xε

of uε it holds that limε→0 xε = 0, and that, for some c, C > 0,

uε(x) + |∇uε(x)| � C exp(−c|x|), x ∈ R
N .

In § 2, we introduce a variational framework and prepare some necessary propo-
sitions. In § 3, we prove theorem 1.1 in earnest. In § 4, we prove the existence of
a solution uε for some more general class of V without a study of the asymptotic
behaviour of the solution uε.

2. Preliminaries

Throughout this section, we assume that (F1)–(F3) hold. Instead of (1.8), we pro-
ceed with a transformed equation (1.9), since it is directly related to limiting prob-
lem (1.11).

The inner product (·, ·) is defined by

(u, v) =
∫

RN

(∇u∇v + muv) dx.

Let H1(RN ) be a real Hilbert space, which is the completion of C∞
0 (RN ) with

respect to the norm ‖ · ‖ defined by

‖u‖ =
( ∫

RN

|∇u|2 + mu2 dx

)1/2

.

We also define Γε : H1(RN ) → R by

Γε(u) = 1
2

∫
RN

|∇u|2 + Vεu
2 dx −

∫
RN

F (u) dx,

where Vε(x) = V (x/ε). Since we are concerned with positive solutions, we may
assume without loss of generality that f(t) = 0 for all t � 0. It is trivial to show
that Γε ∈ C1(H1(RN )). Clearly, a critical point of Γε corresponds to a solution
of (1.9).

The following is an associated limiting equation of (1.9):

∆u − mu + f(u) = 0, u > 0, u ∈ H1(RN ). (2.1)

We define an energy functional for limiting equation (2.1) by

Γ (u) = 1
2

∫
RN

|∇u|2 + mu2 dx −
∫

RN

F (u) dx.
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We note that each solution U of (2.1) satisfies Pohozaev’s identity

N − 2
2

∫
RN

|∇U |2 dx + N

∫
RN

mU2

2
− F (U) dx = 0. (2.2)

Let Sm be the set of least energy solutions U of (2.1) satisfying

U(0) = max
x∈RN

U(x).

If f is C1, any solution of (1.10) is obviously radially symmetric up to a translation
and strictly decreasing. For the case when f is just continuous, the symmetry and
monotonicity of a least energy solution is proven in [13]. Then, the symmetry and
monotonicity of a least energy solution imply that there exist C, c > 0, independent
of U ∈ Sm such that

U(x) + |∇U(x)| � C exp(−c|x|) for all x ∈ R
N . (2.3)

Now we can also deduce that Sm is compact (see also previous works for N �
3 [10], and for N = 1, 2 [12]). Moreover, we have the following symmetry and strict
monotone property of U ∈ Sm.

Proposition 2.1. Any U ∈ Sm is radially symmetric and strictly decreasing with
respect to r = |x|.

Proof. As mentioned above, it is shown in [13] that any U ∈ Sm is radially sym-
metric up to a translation and non-increasing with respect to r = |x|. Thus, it
is sufficient to show that any radially symmetric least energy solution U of (2.1)
is strictly decreasing. Let |x| = r. For any radially symmetric function G(x) =
G(|x|) ∈ C∞(RN , R) and a, b � 0 we see that

0 =
∫ b

a

(
d2U

dr2 +
N − 1

r

dU

dr
− mU + f(U)

)
G(r)

dU

dr
rN dr

=
∫ b

a

d
dr

{(
1
2

∣∣∣∣dU

dr

∣∣∣∣
2

− mU2

2
+ F (U)

)
G(r)rN

}

+
(

N − 2
2

G(r)rN−1 − 1
2

dG

dr
rN

)∣∣∣∣dU

dr

∣∣∣∣
2

+
(

NG(r)rN−1 +
dG

dr
rN

)(
mU2

2
− F (U)

)
dr. (2.4)

From the exponential decaying property of U and |dU/dr|, we see that for any
G ∈ C1(RN ) with an algebraic growth near ∞,

∫ ∞

0

{(
N − 2

2
G(r) − 1

2
dG

dr
r

)∣∣∣∣dU

dr

∣∣∣∣
2

+
(

NG(r) +
dG

dr
r

)(
mU2

2
− F (U)

)}
rN−1 dr = 0.

Suppose that U(r) is a constant M on some interval I ⊂ [0,∞).
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First, we consider a case N � 3. Then, we choose any C1-function G such that
G(r) = rN−2 on [0,∞) \ I. Then, it follows that(

N − 2
2

G(r) − 1
2

dG

dr
r

)∣∣∣∣dU

dr

∣∣∣∣
2

≡ 0 on [0,∞).

Now we get that

0 =
∫ ∞

0

(
NG(r) +

dG

dr
r

)(
mU2

2
− F (U)

)
rN−1 dr

=
∫

r∈I

(
NG(r) +

dG

dr
r

)(
mU2

2
− F (U)

)
rN−1 dr

+
∫

r/∈I

(
NG(r) +

dG

dr
r

)(
mU2

2
− F (U)

)
rN−1 dr. (2.5)

This means that an integration∫
r∈I

(
NG(r) +

dG

dr
r

)(
mU2

2
− F (U)

)
rN−1 dr

is independent for any C1-function G satisfying G(r) = rN−2 on [0,∞) \ I. This
implies that mM2/2 − F (M) = 0. Since U is a C2-solution of (2.1) on r > 0, it
follows that

d
dr

(
1
2

(
dU

dr

)2

− m

2
U2 + F (U)

)
=

(
d2U

dr2 − mU + f(U)
)

dU

dr

= − (N − 1)
r

(
dU

dr

)2

� 0. (2.6)

Thus, a function

A(r) =
1
2

(
dU

dr

)2

− m

2
U2 + F (U)

is monotone decreasing with respect to r = |x|. Then, since limr→∞ A(r) = 0 and
A(r) = 0 on I, there exists R > 0 such that

A(r) = A′(r) = − (N − 1)
r

(
dU

dr

)2

= 0 for all r � R.

Thus, we get that U has compact support. By the Hopf lemma (see [20, § 3]),

dU

dr
(x0) �= 0

for x0 ∈ ∂(suppU). This contradicts U ∈ C2(RN/{0}).
For N = 2, we choose any C1-function G such that G is constant on R

N \ I.
Then, we get a contradiction in the same way as with the case N � 3.

For N = 1, since
1
2

(
dU

dr

)2

− m

2
U2 + F (U) ≡ 0,
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we get that ∫ U(t2)

U(t1)

ds√
ms2 − 2F (s)

= −(t2 − t1).

This implies that U is strictly decreasing. This completes the proof.

To get an energy estimate, we will use the following estimation.

Proposition 2.2. Assume that (V1)–(V3) hold. Let W ∈ C0(RN ) ∩ L∞(RN ) and
W > 0. Then,

lim
ε→0

ε−N

∫
RN

(Vε(x) − m)W (x) dx = W (0)
∫

RN

(V (x) − m) dx.

Proof. For any k > 0, there exists rk > 0 such that |W (x) − W (0)| < 1/k for
|x| � rk. Note that∫

RN

(Vε(x) − m)W (x) dx

= εN

{ ∫
|x|�rk/ε

(V (x) − m)W (εx) dx +
∫

|x|�rk/ε

(V (x) − m)W (εx) dx

}

= εN

{ ∫
|x|�rk/ε

(V (x) − m)(W (εx) − W (0)) dx + W (0)
∫

RN

(V (x) − m) dx

+
∫

|x|�rk/ε

(V (x) − m)(W (εx) − W (0)) dx

}
.

Then, it follows that∣∣∣∣ε−N

∫
RN

(Vε(x) − m)W (x) dx − W (0)
∫

RN

(V (x) − m) dx

∣∣∣∣
� ‖V − m‖L1

k
+ 2‖W‖L∞

∫
|x|�rk/ε

|V (x) − m| dx.

This implies that

lim
ε→0

∣∣∣∣ε−N

∫
RN

(Vε(x) − m)W (x) dx − W (0)
∫

RN

(V (x) − m) dx

∣∣∣∣ � ‖V − m‖L1

k
;

then the conclusion follows.

3. Proof of theorem 1.1

Throughout this section, we assume that (V1)–(V3) and (F1)–(F3) hold. As stated
in § 2, we define Sm as the set of least energy solutions U of (2.1) satisfying U(0) =
maxx∈RN U(x). Now we set Em = Γ (U) for U ∈ Sm. We will find a solution near
the set

X ≡ {U(· − a) | a ∈ R
N , U ∈ Sm}.

For α ∈ R, we define Γα
ε = {u ∈ H1(RN ) | Γε(u) � α}, and for a set A ⊂ H1(RN )

and d > 0 let Ad ≡ {u ∈ H1(RN ) | infv∈A ‖u − v‖ � d}.
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Proposition 3.1. There exists some t0 > 0 and a continuous path ζ : [0, t0] →
H1(RN ) satisfying ζ(0) = 0 and Γε(ζ(t0)) < −1 such that, for any U ∈ Sm,

max
t∈[0,t0]

Γε(ζ(t)) � Em + εN

{
U2(0)

2

∫
RN

(V (x) − m) dx + o(1)
}

as ε → 0.

Moreover, for any small α > 0, there exists a constant β > 0 such that, for any
t ∈ (0, t0),

ζ(t) ∈ Xα ∪ ΓEm−β
ε .

Proof. First, we consider the case N � 3. Now defining ζ : (0,∞) → H1(RN ) by

ζ(t)(x) = U(x/t) and ζ(0) = 0,

we see that ζ : [0,∞) → H(RN ) is continuous. It is easy to see from (2.2) that

lim
t→∞

Γ (ζ(t)) = −∞.

Since

Γε(ζ(t)) = Γ (ζ(t)) + 1
2

∫
(Vε − m)(ζ(t))2 dx = Γ (ζ(t)) + O(εN ),

there exists some large t0 > 0 such that Γε(ζ(t0)) < −1. Moreover, we compute
that

Γε(ζ(t)) =
tN−2

2

∫
RN

|∇U |2 dx + tN
∫

RN

m

2
U2 − F (U) dx

+ 1
2

∫
RN

(Vε(x) − m)U2(x/t) dx (3.1)

and

dΓε(ζ(t))
dt

=
N − 2

2
tN−3

∫
RN

|∇U |2 dx + NtN−1
∫

RN

m

2
U2 − F (U) dx

+
∫

RN

(Vε(x) − m)U(x/t)∇U(x/t) · (−x/t2) dx. (3.2)

Then, from the exponential decay of U and |∇U | in (2.3), we see that∣∣∣∣dΓε(ζ(t))
dt

∣∣∣∣
t=1

=
∣∣∣∣
∫

RN

(Vε(x) − m)U(x)∇U · xdx

∣∣∣∣ = O(εN ) as ε → 0. (3.3)

Setting x/t = y = (y1, . . . , yN ) and r = |y|, we get from the radial symmetric
property of U ∈ Sm that

N∑
i,j=1

DijU(y)yiyj = r2 d2U

dr2 = −r(N − 1)
dU

dr
+ r2(mU − f(U)). (3.4)
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Then, we see that Γε(ζ(t)) is a C2-function with respect to t ∈ (0,∞), and that

d2Γε(ζ(t))
dt2

=
(N − 2)(N − 3)

2
tN−4

∫
RN

|∇U |2 dx

+ N(N − 1)tN−2
∫

RN

m

2
U2 − F (U) dx

+ t−4
∫

RN

(Vε(x) − m)
(

|∇U(x/t) · x|2 + U(x/t)
N∑

i,j=1

DijU(x/t)xixj

)
dx

+ 2t−3
∫

RN

(Vε(x) − m)U(x/t)∇U(x/t) · xdx. (3.5)

Moreover, from (2.2), (2.3) and (3.4), we see that, if ρ > 0 is sufficiently small,

lim
ε→0

d2Γε(ζ(t))
dt2

� −N − 2
2

∫
RN

|∇U |2 dx, (3.6)

uniformly on t ∈ (1 − ρ, 1 + ρ). This implies that there exists tε ∈ [0, t0] satisfying

max
s∈[0,1]

Γε(ζ(st0)) = Γε(ζ(tε)) and lim
ε→0

tε = 1.

Then, there exists a point t̂ε > 0 between tε and 1 such that

0 =
dΓε(ζ(t))

dt

∣∣∣∣
t=tε

=
dΓε(ζ(t))

dt

∣∣∣∣
t=1

+ (tε − 1)
d2Γε(ζ(t))

dt2

∣∣∣∣
t=t̂ε

.

From (3.3) and (3.6), we get that |tε − 1| = O(εN ) as ε → 0. There also exists a
point t′ε > 0 between tε and 1 such that

Γε(ζ(tε)) = Γε(ζ(1)) + (tε − 1)
dΓε(ζ(t))

dt

∣∣∣∣
t=t′

ε

.

We note that ζ(1) = U and

lim
ε→0

dΓε(ζ(t))
dt

∣∣∣∣
t=t′

ε

= 0.

Then, it follows from proposition 2.2 that

max
s∈[0,1]

Γε(ζ(st0)) = Γε(ζ(tε)) = Γε(U) + o(εN )

= Γ (U) + 1
2

∫
RN

(Vε − m)U2 dx + o(εN )

� Em + εN

{
U2(0)

2

∫
RN

(V (x) − m) dx + o(1)
}

as ε → 0. (3.7)

Second, we consider a case N = 2. Here we use an idea similar to [12, 23]. We
denote h(s) ≡ −ms+f(s), H(s) ≡ −1

2ms2+F (s). Define a function g(θ, t) : (0,∞)×
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(0,∞) → R by

g(θ, t) ≡ Γ (θU(·/t)) =
θ2

2
‖∇U‖2

L2 − t2
∫

R2
H(θU) dx,

and a function gε(θ, t) : (0,∞) × (0,∞) → R by

gε(θ, t) ≡ Γε(θU(·/t)) = g(θ, t) + 1
2

∫
R2

(Vε(x) − m)θ2U2(x/t) dx.

Then we see that

gθ(θ, t) = θ‖∇U‖2
L2 − t2

∫
R2

h(θU)U dx,

gt(θ, t) = −2t

∫
R2

H(θU) dx.

Then, we can find a small τ0 ∈ (0, 1) such that

gθ(θ, t) = θ

(
‖∇U‖2

L2 − t2
∫

R2

h(θU)
θU

U2 dx

)
� θ

2
‖∇U‖2

L2 > 0, (3.8)

for θ ∈ (0, 2], t ∈ [0, τ0]. Similarly, we see that if ε > 0 is sufficiently small,

(gε)θ(θ, t) = gθ(θ, t) + θ

∫
R2

(Vε(x) − m)U2(x/t) dx

> 1
4θ‖∇U‖2

L2 > 0 for θ ∈ (0, 2], t ∈ [0, τ0]. (3.9)

Since U satisfies (2.1) and (2.2), we get∫
R2

H(U) = 0,

∫
R2

h(U)U dx = ‖∇U‖2
L2 > 0.

Thus there exist constants θ1, θ2 > 0 satisfying θ1 < 1 < θ2 < 2 such that

∂

∂θ

∫
R2

H(θU) dx =
∫

R2
h(θU)U dx >

1
2
‖∇U‖2

L2 > 0 for θ ∈ [θ1, θ2]. (3.10)

From the exponential decaying property of |∇U | in (2.3), we see that, for τ0 � t,
θ1 � θ � θ2,

(gε)tθ(θ, t) = −2t

∫
R2

h(θU)U dx + 2θ

∫
R2

(Vε(x) − m)U(x/t)∇U(x/t) · (−x/t2) dx

� −2τ0

∫
R2

h(θU)U dx + 2θ

∫
R2

(Vε(x) − m)U(x/t)∇U(x/t) · (−x/t2) dx

� −τ0‖∇U‖2
L2 + 2θ

∫
R2

(Vε(x) − m)U(x/t)∇U(x/t) · (−x/t2) dx

� −τ0

2
‖∇U‖2

L2

< 0, (3.11)
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(gε)t(θ1, t) = −2t

∫
R2

H(θ1U) dx +
∫

R2
(Vε(x) − m)θ2

1U(x/t)∇U(x/t) · (−x/t2) dx

� −2τ0

∫
R2

H(θ1U) dx +
∫

R2
(Vε(x) − m)θ2

1U(x/t)∇U(x/t) · (−x/t2) dx

� −τ0

∫
R2

H(θ1U) dx

> 0 (3.12)

and

(gε)t(θ2, t) = −2t

∫
R2

H(θ2U) dx +
∫

R2
(Vε(x) − m)θ2

2U(x/t)∇U(x/t) · (−x/t2) dx

� −2τ0

∫
R2

H(θ2U) dx +
∫

R2
(Vε(x) − m)θ2

2U(x/t)∇U(x/t) · (−x/t2) dx

� −τ0

∫
R2

H(θ2U) dx

< 0 (3.13)

if ε > 0 is sufficiently small. Applying the mean-value theorem and the implicit
function theorem to (3.11)–(3.13), we see that there exists a continuous function
θε : [τ0,∞) → R such that θε(t) ∈ (θ1, θ2) satisfies

(gε)t(θ, t)

⎧⎪⎨
⎪⎩

> 0 for θ ∈ [θ1, θε(t)),
= 0 for θ = θε(t),
< 0 for θ ∈ (θε(t), θ2].

(3.14)

Moreover, there exists C > 0 such that for t � τ0

|(gε)t(1, t)| =
∣∣∣∣
∫

R2
(Vε(x) − m)U(x/t)∇U(x/t) · (x/t2) dx

∣∣∣∣ � Cε2 (3.15)

if ε > 0 is sufficiently small. From (3.11), there exists a constant D > 0 such that
|θε(t) − 1| � Dε2 for t � τ0 and small ε > 0. Now we define that

inf
t�τ0

θε(t) ≡ θε,

sup
t�τ0

θε(t) ≡ θε.

⎫⎪⎬
⎪⎭ (3.16)

Then, we get that for small ε > 0, |θε − 1| � Dε2 and |θε − 1| � Dε2; this implies
that θε − Dε2 � 1 � θε + Dε2. For t � τ0, we see that

(gε)t(θε − Dε2, t) > 0,

(gε)t(θε + Dε2, t) < 0.

}
(3.17)

For small ε > 0, let ζ̂(s) = (θ(s), t(s)) : [0,∞) → R
2 be a piecewise linear injective

curve joining

(0, τ0) → (θε − Dε2, τ0) → (θε − Dε2, 1) → (θε + Dε2, 1) → (θε + Dε2,∞), (3.18)
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where each line segment in the image of ζ̃ is parallel to axes. Let 0 ≡ ŝ0 < ŝ1 < · · · <
ŝ4 ≡ ∞ be such that for each i = 0, . . . , 4, ζ̂(ŝi) is the end point of a linear segment of
the piecewise linear curve ζ̂. Then, we see that the function s �→ Γε(θ(s)U(x/t(s)))
is strictly increasing on (ŝ0, ŝ1), (ŝ1, ŝ2) by (3.9), (3.17) respectively. We also see
that the function s �→ Γε(θ(s)U(x/t(s))) is strictly decreasing on (ŝ3, ŝ4) by (3.17).
There exists s0 > 0 such that Γε(θ(s0)U(·/t(s0))) < −1, where θ(s0) = θε + Dε2

and t(s0) > 1. Now for N = 2, we define ζ(s)(x) = θ(s)U(x/t(s)), which is actually
dependent on ε > 0. From the monotone property of Γε(ζ(·)) on (ŝi, ŝi+1), i =
0, 1, 3, we get that

max
s∈[0,s0]

Γε(ζ(s)) = Γε(θεU) for some θε ∈ [θε − Dε2, θε + Dε2].

Now we note that there exists θ̂ε > 0 between 1 and θε satisfying

Γ (θεU) = Γ (U) + (θε − 1)
dΓ (θU)

dθ

∣∣∣∣
θ=θ̂ε

. (3.19)

Since |θε − 1| � 2Dε2, it follows that

lim
ε→0

dΓ (θU)
dθ

∣∣∣∣
θ=θ̂ε

= 0.

Then, it follows from proposition (2.2) that

max
s∈[0,s0]

Γε(ζ(s)) = Γε(θεU)

= Γ (θεU) + 1
2

∫
R2

(Vε(x) − m)θ2
εU2(x) dx

= Γ (U) + (θε − 1)
dΓ (θU)

dθ

∣∣∣∣
θ=θ̂ε

+ 1
2

∫
R2

(Vε(x) − m)θ2
εU2(x) dx

� Em +
ε2

2

{
U2(0)

∫
R2

(V (x) − m) dx + o(1)
}

as ε → 0. (3.20)

Finally, we consider the case N = 1. We note that Sm consists of one element
U ∈ H1(R) and, in addition, U(0) = T , where T > 0 is given in (F3). Let ρ > 0
and define q : R → R by

q(x) =

⎧⎪⎨
⎪⎩

U(x), x ∈ [0,∞),
x4 + U(0), x ∈ [−ρ, 0],
ρ4 + U(0), x ∈ (−∞,−ρ].

(3.21)

From (F3) and U(0) = T , we can choose ρ > 0 so that for x ∈ [−ρ, 0)

1
2 (q′(x))2 + 1

2mq2(x) − F (q(x)) = 8x6 + 1
2m(x4 + U(0))2 − F (x4 + U(0))

< 0. (3.22)

Now defining ζ : (0,∞) → H1(R) by

ζ(t)(x) = q(|x| − ln t) and ζ(0) = 0,
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we see that ζ : [0,∞) → H1(R) is continuous. Using (3.22) and (F3), it is easy to
see that

Γ (ζ(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Em +
∫ 0

− ln t

|U ′(x)|2 + mU2(x) − 2F (U(x)) dx < Em, 0 < t < 1,

Em +
∫ 0

− ln t

|q′(x)|2 + mq2(x) − 2F (q(x)) dx < Em, t > 1.

(3.23)

From (3.22), it follows that

Γ (ζ(t)) � Em +
∫ −ρ

− ln t

|q′(x)|2 + mq2(x) − 2F (q(x)) dx

= Em + (ln t − ρ){m(ρ4 + U(0))2 − 2F (ρ4 + U(0))} → −∞ as t → ∞.
(3.24)

Since

Γε(ζ(t)) = Γ (ζ(t)) + 1
2

∫
(Vε − m)(ζ(t))2 dx = Γ (ζ(t)) + O(ε),

there exists some large t0 > 0 such that Γε(ζ(t0)) < −1. Now we define

Q(x) =

{
|U ′(x)|2 + mU2(x) − 2F (U(x)) for x � 0,

|q′(x)|2 + mq2(x) − 2F (q(x)) for x � 0.
(3.25)

We see that

Γε(ζ(t)) = Em +
∫ 0

− ln t

Q(x) dx + 1
2

∫
(Vε − m)(ζ(t))2 dx (3.26)

and

dΓε(ζ(t))
dt

=
Q(− ln t)

t
+

∫
(Vε − m)ζ(t)

∂ζ(t)
∂t

dx, (3.27)

where, for H(t) = −mt2/2 + F (t),

Q(− ln t) =

⎧⎪⎪⎨
⎪⎪⎩

|U ′(− ln t)|2 − 2H(U(− ln t)) for 0 < t < 1,

16(− ln t)6 − 2H((− ln t)4 + U(0)) for 1 < t < eρ,

−2H(ρ4 + U(0)) for t > eρ.

(3.28)

Now we see that dΓε(ζ(t))/dt is continuous on {t | 0 < t < eρ}. From the exponen-
tial decaying property of |U ′(x)|, we have that

∣∣∣∣∂ζ(t)(x)
∂t

∣∣∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

|U ′(|x| − ln t)/t| � 1 for 0 � t < e|x|,

|4(|x| − ln t)3/t| � 4ρ3 for e|x| < t < eρ+|x|,

0 for eρ+|x| < t.

(3.29)
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Then we get that ∫
(Vε − m)ζ(t)

∂ζ(t)
∂t

dx = O(ε) as ε → 0.

We note that

lim
ε→0

dΓε(ζ(t))
dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|U ′(− ln t)|2 + mU2(− ln t) − 2F (U(− ln t))
t

> 0, 0 < t < 1,

16(− ln t)6 + m((− ln t)4 + U(0))2 − 2F ((− ln t)4 + U(0))
t

< 0, 1 < t < eρ,

m(ρ4 + U(0))2 − 2F (ρ4 + U(0))
t

< 0, t > eρ.

(3.30)

Thus, Γε(ζ(t)) has a maximum at tε such that limε→0 tε = 1. Also we have that

ζ(tε)(x) − U(x) =

⎧⎪⎪⎨
⎪⎪⎩

U(|x| − ln tε) − U(x) for |x| − ln tε � 0,

(|x| − ln tε)4 + U(0) − U(x) for − ρ < |x| − ln tε � 0,

ρ4 + U(0) − U(x) for − ∞ < |x| − ln tε < −ρ.

(3.31)
Since limε→0(ln tε − ρ) < −ρ/2 < 0, we get that

ζ(tε)(x) − U(x) =

{
U(|x| − ln tε) − U(x) for |x| − ln tε � 0,

(|x| − ln tε)4 + U(0) − U(x) for − ln tε � |x| − ln tε � 0.

(3.32)
Thus, we obtain that maxx∈R |ζ(tε)(x)−U(x)| = o(1) as ε → 0. Moreover, we have
from (3.23) that maxt∈[0,∞) Γ (ζ(t)) = Γ (ζ(1)) = Γ (U) = Em. Then, it follows from
proposition 2.2 that

max
t∈[0,t0]

Γε(ζ(t)) = Γε(ζ(tε))

= Γ (ζ(tε)) + 1
2

∫
(Vε − m)(ζ(tε))2 dx

= Γ (ζ(tε)) + 1
2

∫
(Vε − m)U2 dx + 1

2

∫
(Vε − m)((ζ(tε))2 − U2) dx

� Em +
ε

2

{
U2(0)

∫
(V (x) − m) dx + o(1)

}
as ε → 0. (3.33)

Lastly, the property ζ(t) ∈ Xα ∪ ΓEm−β
ε comes directly from the construction

of ζ.

For a path ζ in proposition 3.1, we take a sufficiently large G > 0 satisfying

G > 2 max
0�s�1

{dist(ζ(st0), X)}.
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We define

Φ ≡ {γ ∈ C([0, 1], XG) | γ(0) = 0 and γ(1) = ζ(t0)},

Dε = max
s∈[0,1]

Γε(ζ(st0)),

and

Cε = inf
γ∈Φ

max
s∈[0,1]

Γε(γ(s)).

Here we note that the min–max value Cε is a local, not global, mountain-pass level
since Φ ⊂ C([0, 1], XG).

From proposition 3.1, it follows that

Cε � Dε � Em +
εN

2

{
U2(0)

∫
RN

(V (x) − m) dx + o(1)
}

< Em as ε → 0.

Now we get the following lower estimation of Cε.

Proposition 3.2. Em � lim infε→0 Cε.

Proof. On the contrary, we assume that lim infε→0 Cε < Em. Then, there exists
α > 0, εn → 0 and γn ∈ Φ satisfying Γεn(γn(s)) < Em − α for s ∈ [0, 1].

We see from (V2) that for any k > 0, there exists Rk > 0 such that |V (x)−m| <
1/k for |x| � Rk. There is a constant M > 0 such that

max
s∈[0,1]

‖γ(s)‖ � M

for all γ ∈ Φ, since X is bounded in H1(RN ) and Φ ⊂ C([0, 1], XG). From the facts
Γ (γn(0)) = 0, Γ (γn(1)) < 0 and the results in [22] and [23] which state that

Em � max
s∈[0,1]

Γ (η(s))

for any η ∈ C([0, 1], H1(RN )) satisfying η(0) = 0 and Γ (η(1)) < 0, we see that

max
s∈[0,1]

Γ (γn(s)) � Em. (3.34)

From the Sobolev inequality in [1] and the Hölder inequality, there exist some
constants c, C > 0 such that for any k, n > 0,

Em − α

� max
s∈[0,1]

Γεn(γn(s))

� max
s∈[0,1]

{
Γ (γn(s)) − 1

2

∣∣∣∣
∫

|x|�εnRk

(Vεn − m)γ2
n(s) dx

∣∣∣∣
− 1

2

∣∣∣∣
∫

|x|�εnRk

(Vεn − m)γ2
n(s) dx

∣∣∣∣
}

� Em − 1
2

max
s∈[0,1]

{∣∣∣∣
∫

|x|�εnRk

(Vεn
− m)γ2

n(s) dx

∣∣∣∣ −
∣∣∣∣
∫

|x|�εnRk

(Vεn
− m)γ2

n(s) dx

∣∣∣∣
}
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�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Em − 1
2k

max
s∈[0,1]

∫
RN

γ2
n(s) dx − c max

s∈[0,1]
(εnRk)2‖γn‖2

L2N(N−2)

for N � 3,

Em − 1
2k

max
s∈[0,1]

∫
RN

γ2
n(s) dx − c max

s∈[0,1]
(εnRk)‖γn‖2

L4 for N = 2,

Em − 1
2k

max
s∈[0,1]

∫
RN

γ2
n(s) dx − c max

s∈[0,1]
(εnRk)‖γn‖2

L∞(RN ) for N = 1,

�

⎧⎪⎪⎨
⎪⎪⎩

Em − M2

2k
− C(εnRk)2M2 for N � 3,

Em − M2

2k
− C(εnRk)M2 for N = 1, 2.

(3.35)

Taking k > 0 such that M2/k � α and sufficiently large n > 0, we get a contradic-
tion.

Proposition 3.3. Let d1 > d2 > 0 be sufficiently small. There exist constants
w > 0 and ε0 > 0 such that ‖Γ ′

ε(u)‖ � w for u ∈ ΓDε
ε ∩(Xd1 \Xd2) and 0 < ε � ε0.

Proof. On the contrary, we suppose that, for small d1 > d2 > 0, there exists
{εi}∞

i=1 with limi→∞ εi = 0 and uεi
∈ Xd1 \ Xd2 satisfying limi→∞ ‖Γ ′

εi
(uεi

)‖ = 0
and Γεi(uεi) � Dεi . For the sake of convenience we write ε for εi. Now we set
uε = zε(· − aε) + wε where zε ∈ Sm, aε ∈ R

N , and d2 � ‖wε‖ � d1. Then,

ηε = uε(· + aε) ∈ Xd1 \ Xd2 .

We see from (V2) that, for any k > 0, there exists Rk > 0 such that |V (x)−m| < 1/k
for |x| � Rk. By the Sobolev inequalities in [1] and Hölder’s inequality, it follows
that, for some constant C > 0,

Γε(ηε) = Γε(uε) + 1
2

∫
RN

(Vε(x) − m)(η2
ε(x) − u2

ε(x)) dx

= Γε(uε) + 1
2

∫
|x|�εRk

(Vε(x) − m)(η2
ε(x) − u2

ε(x)) dx

+ 1
2

∫
|x|�εRk

(Vε(x) − m)(η2
ε(x) − u2

ε(x)) dx

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dε +
‖uε‖2

k
+ C(εRk)2‖uε‖2

L2N/(N−2)(RN ) for N � 3,

Dε +
‖uε‖2

k
+ CεRk‖uε‖2

L4(RN ) for N = 2,

Dε +
‖uε‖2

k
+ CεRk‖uε‖2

L∞(RN ) for N = 1,

�

⎧⎪⎪⎨
⎪⎪⎩

Dε + ‖uε‖2
(

1
k

+ C(εRk)2
)

for N � 3,

Dε + ‖uε‖2
(

1
k

+ CεRk

)
for N = 1, 2.

(3.36)
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Since X is norm bounded and k > 0 is arbitrary, it follows that

lim sup
ε→0

Γε(ηε) � Em. (3.37)

Given any v ∈ C∞
0 (RN ), ‖v‖ � 1, and k > 0, we see, as in the above estimate of

Γε(ηε), that for some C > 0,

|Γ ′
ε(ηε)(v)| =

∣∣∣∣Γ ′
ε(uε)(v(· − aε)) +

∫
RN

Vε(ηεv − uεv(· − aε)) dx

∣∣∣∣
� ‖Γ ′

ε(uε)‖ +
∣∣∣∣
∫

RN

(Vε − m)(ηεv − uεv(· − aε)) dx

∣∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩

‖Γ ′
ε(uε)‖ + ‖uε‖

(
1
k

+ C(εRk)
)

for N � 3,

‖Γ ′
ε(uε)‖ + ‖uε‖

(
1
k

+ C(εRk)1/2
)

for N = 1, 2.

Thus, it follows that
lim
ε→0

‖Γ ′
ε(ηε)‖ = 0. (3.38)

By the compactness of Sm in H1(RN ), there exists z ∈ Sm such that zε → z in
H1(RN ). Then, for sufficiently small ε > 0, it follows that

‖ηε − z‖ = ‖(zε − z) + wε(· + aε)‖ � 2d1.

Moreover, there exists η ∈ H1(RN ) such that ηε ⇀ η weakly, up to a subsequence,
in H1(RN ) as ε → 0.

Now we claim that ηε → η strongly in H1(RN ). In fact, suppose that there exists
xε ∈ R

N with limε→0 |xε| = ∞ such that, for some R > 0,

lim sup
ε→0

∫
B(xε,R)

(ηε)2 dx > 0.

We may assume that ηε(· + xε) converges weakly to η′ ∈ H1(RN ) \ {0}. Then, it is
easy to see that

∆η′ − mη′ + f(η′) = 0, η′ > 0 in R
N .

Then, from the Pohozaev identity we see that

Γ (η′) =
1
N

‖∇η′‖2
L2 � Em.

For large R > 0, it holds that

lim sup
ε→0

∫
B(xε,R)

|∇ηε|2 dy � 1
2

∫
RN

|∇η′|2 dy = 1
2NΓ (η′) � 1

2NEm. (3.39)

We take d1 > 0 satisfying d1 < 1
4

√
NEm/2. Then, we get a contradiction since

limε→0 |xε| = ∞ and ‖ηε − z‖ � 2d1. Thus, we get that

lim sup
|y|→∞

∫
B(y,R)

(ηε)p+1 dx = lim sup
|y|→∞

∫
B(y,R)

(ηε)2 dx = 0
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uniformly for small ε > 0. Applying [29, lemma 1.1] for N � 3, [12, lemma 1] for
N = 2 and [12, remark 1(i)] for N = 1, we see that

lim
R→∞

( ∫
|x|�R

F (ηε) dx

)
= 0

uniformly for small ε > 0. Then, since

lim
ε→0

∫
B(0,R)

F (ηε) dx =
∫

B(0,R)
F (η) dx,

we get that

lim
ε→0

∫
RN

F (ηε) dx =
∫

RN

F (η) dx. (3.40)

From the weak convergence of ηε to η in H1(RN ), (3.37), (3.40) and (3.38) it
follows that Em � Γ (η), Γ ′(η) = 0. From the maximum principle, it also follows
that η(x) > 0 for any x ∈ R

N . Thus, we conclude that Γ (η) = Em and η ∈ X.
Then, from (3.37), we get that

Em = 1
2

∫
RN

|∇η|2 + mη2 dx −
∫

RN

F (η) dx

� lim sup
ε→0

(
1
2

∫
RN

|∇ηε|2 + Vεη
2
ε dx −

∫
RN

F (ηε) dx

)

� 1
2

∫
RN

|∇η|2 + mη2 dx −
∫

RN

F (η) dx

= Em. (3.41)

From (3.40) and (3.41), we get that

lim
ε→0

∫
RN

|∇ηε|2 + mη2
ε dx =

∫
RN

|∇η|2 + mη2 dx.

This proves the strong convergence of ηε to η ∈ X in H1(RN ) as ε → 0. This
contradicts that ηε ∈ Xd1 \ Xd2 and completes the proof.

Now we can take a sufficiently small d ∈ (0, G) such that, for 0 < ‖u‖ � 3d,

Γ (u) > 0, Γ ′(u)(u) > 0, Γε(u) > 0, Γ ′
ε(u)(u) > 0, (3.42)

and that, for some ω > 0 and ε0 > 0,

‖Γ ′
ε(u)‖ � w if u ∈ ΓDε

ε ∩ (Xd \ Xd/2) and 0 < ε � ε0. (3.43)

Then, proposition 3.1 implies the following proposition.

Proposition 3.4. There exists α > 0 such that, for sufficiently small ε > 0,
Γε(ζ(t)) � Cε − α with t ∈ (0, t0) implies that ζ(t) ∈ Xd/2.

Now for small ε > 0, we get a sequence {un}n ⊂ Xd ∩ ΓDε
ε with

lim
n→∞

Γ ′
ε(un) = 0.
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Proposition 3.5. For sufficiently small, fixed ε > 0 there exists a sequence

{un}∞
n=1 ⊂ Xd ∩ ΓDε

ε

such that Γ ′
ε(un) → 0 as n → ∞.

Proof. Since we have (3.43) and proposition 3.4, we can prove the above proposition
following the same procedure as with the proof of [10, proposition 7], which we
sketch for the reader’s convenience. Suppose that proposition 3.5 does not hold for
sufficiently small ε > 0. Then, there exists a(ε) > 0 such that ‖Γ ′

ε‖ � a(ε) on
Xd ∩ ΓDε

ε . Now there exists a pseudo-gradient vector field Qε on a neighbourhood
Zε of Xd ∩ ΓDε

ε for Γε (see [32]). Let χε be a Lipschitz continuous function on
H1(RN ) such that 0 � χε � 1, χε ≡ 1 on Xd ∩ ΓDε

ε and χε ≡ 0 on H1(RN ) \ Zε.
Also, let ξε be a Lipschitz continuous function on R such that 0 � ξε � 1, ξε(a) ≡ 1
if |Cε −a| � α/2, and ξε(a) ≡ 0 if |Cε −a| � α. Then, there exists a global solution
Λε : H1(RN ) × R → H1(RN ) of the initial-value problem

∂Λε(u, τ)
∂τ

= −χε(Λε(u, τ))ξε(Γε(Λε(u, τ)))Qε(Λε(u, τ)),

Λε(u, 0) = u.

Recall that limε→0 Cε = limε→0 Dε = Em. By a deformation argument using propo-
sitions 3.3 and 3.4, we get some large τε > 0 such that

Γε(Λε(ζ(st0), τε)) < Em − α/4, s ∈ [0, 1].

Note that γ̃ε(s) = Λε(ζ(st0), τε) ∈ Φ and Γε(γ̃ε(s)) < Em − α/4 for all s ∈ [0, 1].
This contradicts proposition 3.2.

The existence of a sequence {un}n in Xd ∩ΓDε
ε with limn→∞ Γ ′

ε(un) = 0 implies
the following existence result of a solution of (1.9).

Proposition 3.6. For sufficiently small ε > 0, Γε has a critical point

uε ∈ Xd ∩ ΓDε
ε .

Proof. Let {un}∞
n=1 be the sequence as given by proposition 3.5 for sufficiently small

ε > 0. Now we write un = vn(· − an) + wn with vn ∈ Sm, an ∈ R
N , ‖wn‖ � d and

denote τn = un(· + an). If {an}n is bounded, we can prove the claim by the proof
of [10, proposition 8]. Now, we show the boundedness of {an}n.

On the contrary, suppose that lim infn→∞ |an| = ∞. Since Sm is compact, we
may assume that vn converges to some v in H1(RN ). Then, the function v satisfies
∆v − mv + f(v) = 0 and v > 0. We may assume that wn converges weakly to
some w in H1(RN ) as n → ∞. Then, we see that ∆w − Vεw + f(w) = 0 in R

N .
From (3.42), we see that w = 0. This implies that, for each R > 0,

lim
n→∞

∫
B(0,R)

(wn)2 dx = 0.

Note that, for any φ ∈ C∞
0 (RN ),

Γ ′
ε(un)(φ) = Γ ′(un)(φ) +

∫
RN

(Vε − m)(vn(· − an) + wn)φ dx,
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and that, for each R > 0,∣∣∣∣
∫

RN

(Vε − m)(vn(· − an) + wn)φ dx

∣∣∣∣
� ‖V − m‖L∞(RN )

( ∫
B(0,R)

(vn(· − an) + wn)2 dx

)1/2

‖φ‖

+ ‖Vε − m‖L∞(RN \B(0,R))‖vn(· − an) + wn‖‖φ‖

and∣∣∣∣
∫

RN

(Vε − m)(vn(· − an) + wn)2 dx

∣∣∣∣
� ‖V − m‖L∞(RN )

∫
B(0,R)

(vn(· − an) + wn)2 dx

+ ‖Vε − m‖L∞(RN \B(0,R))‖vn(· − an) + wn‖2.

This implies that limn→∞ Γ ′(un) = 0 and limn→∞ Γ (un) � Dε. Then, by the same
argument as that in the proof of the strong convergence of τε to τ in proposition 3.3,
it follows that τn converges to some τ ∈ H1(RN ) \ {0}, satisfying Γ ′(τ) = 0 and
Γ (τ) � Dε. Since Dε < Em for small ε > 0, this contradicts that Em is the least
energy level for all non-trivial critical points of Γ .

Thus, we get the boundedness of the sequence {an}n. This completes the proof.

We see from proposition 3.6 that there exist d > 0 and ε0 > 0 such that Γε has
a critical point uε ∈ Xd ∩ ΓDε

ε , 0 < ε � ε0. Let xε ∈ R
N be a maximum point of

uε. Then we get the following proposition.

Proposition 3.7. For sufficiently small ε > 0, uε > 0 in R
N , and there exist

some constants c, C > 0, independent of small ε > 0, such that uε(x) + |∇uε(x)| �
C exp(−c|x − xε|) for x ∈ R

N .

Proof. Since lim|x|→∞ V (x) = m > 0, there exists R > 0 such that V (x) � 1
2m

for |x| � R. Denote a+ = max(a, 0) and a− = min(a, 0). Since uε satisfies ∆uε −
Vεuε + f(uε) = 0 and f(s) = 0 for s � 0, we see that∫

RN

|∇u−
ε |2 + Vε(u−

ε )2 dx = 0.

By Sobolev’s inequality and Hölder’s inequality, there exists some C > 0 such that

0 =
∫

RN

|∇u−
ε |2 + Vε|u−

ε |2 dx

�
∫

RN

|∇u−
ε |2 dx +

∫
|x|�εR

Vε|u−
ε |2 dx +

m

2

∫
|x|�εR

|u−
ε |2 dx

� 1
2
‖u−

ε ‖2 −
(

max
x∈RN

|V | +
m

2

) ∫
|x|�εR

|u−
ε |2 dx
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�

⎧⎪⎪⎨
⎪⎪⎩

1
2‖u−

ε ‖2 − ε2CR2‖u−
ε ‖2

L2∗ for N � 3,

1
2‖u−

ε ‖2 − εCR‖u−
ε ‖2

L4 for N = 2,

1
2‖u−

ε ‖2 − εCR‖u−
ε ‖2

L∞ for N = 1,

�
{

( 1
2 − ε2CR2)‖u−

ε ‖2 for N � 3,

( 1
2 − εCR)‖u−

ε ‖2 for N = 1, 2.
(3.44)

Now we get u−
ε ≡ 0 in R

N , uε � 0 for sufficiently small ε > 0. Applying the strong
maximum principle (see [30]) to the following equation:

∆uε −
(

Vεuε − f(uε)
uε

)+

uε =
(

Vεuε − f(uε)
uε

)−
uε � 0,

we get uε > 0 in R
N .

Moreover, from elliptic estimates through the Moser iteration scheme [20], we
deduce that {‖uε‖L∞}ε is bounded. Since Γε(uε) � Dε → Em, we deduce from
comparison principles that for some C, c > 0, independent of small ε > 0, uε(x) +
|∇uε(x)| � C exp(−c|x − xε|) for all x ∈ R

N . This completes the proof.

Let xε be a maximum point of uε. Then, it follows from proposition 3.7 and
the fact that limε→0 Γε(uε) � Em, that uε(· + xε) converges uniformly, up to a
subsequence, in the C1-sense to a function Ũ ∈ Sm as ε → 0. To see the asymptotic
behaviour of xε, we need to obtain the following lower energy estimation of uε.

Proposition 3.8. For N � 2,

Γε(uε) � Em + εN

(
(Ũ(xε))2

2

∫
RN

(V (x) − m

)
dx + o(1))

as ε → 0. Moreover, for any N � 1, a maximum point xε of uε converges to 0 as ε
goes to 0.

Proof. Taking a subsequence, if it is necessary, we may also assume that uε(· + xε)
converges weakly to Ũ ∈ Sm in H1(RN ) as ε → 0. Then, we see from the exponential
decay in proposition 3.7 that

lim
ε→0

∫
RN

F (uε(· + xε)) dx =
∫

RN

F (Ũ) dx. (3.45)

Then, it follows that lim supε→0 Γε(uε) � Em and

Γε(uε) = Γ (uε) + 1
2

∫
RN

(Vε(x) − m)(uε(x))2 dx = Γ (uε) + o(1).

Thus, it follows from the weak convergence of uε(· + xε) to Ũ in H1(RN ) that

Em � lim inf
ε→0

Γ (uε(· + xε)) � Γ (Ũ) � Em. (3.46)

This implies that

lim
ε→0

∫
RN

|∇uε(· + xε)|2 + muε(· + xε)2 dx =
∫

RN

|∇Ũ |2 + mŨ2 dx.
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This proves the strong convergence of uε(· + xε) to Ũ in H1(RN ). Since we can
write

Γε(uε) = Γ (uε) + 1
2

∫
RN

(Vε(x) − m)(uε)2 dx,

we estimate the two right-hand terms separately.
First, we estimate ∫

RN

(Vε(x) − m)u2
ε(x) dx.

By the elliptic estimates for {uε} (see [20]) and an imbedding W 2,q
loc ↪→ C1

loc for
large q > 0, we see that, for a given k > 0, there exists rk > 0 such that if |x| � rk,
then |u2

ε(x) − u2
ε(0)| < 1/k for uniformly small ε > 0. Then, we have the estimate∫

RN

(Vε(x) − m)u2
ε(x) dx

= εN

{
u2

ε(0)
∫

RN

(V (x) − m) dx +
∫

|x|�rk/ε

(V (x) − m)(u2
ε(εx) − u2

ε(0)) dx

+
∫

|x|�rk/ε

(V (x) − m)(u2
ε(εx) − u2

ε(0)) dx

}

� εN

{
u2

ε(0)
∫

RN

(V (x) − m) dx − ‖V − m‖L1

k

− 2‖uε‖2
L∞

∫
|x|�rk/ε

|V (x) − m| dx

}
.

Then, we get that, for small ε > 0,∫
RN

(Vε(x) − m)u2
ε(x) dx � εN

{
u2

ε(0)
∫

RN

(V (x) − m) dx + o(1)
}

. (3.47)

Since uε(·+xε) converges uniformly to Ũ ∈ Sm, it follows from the radial symmetry
of Ũ ∈ Sm that∫

RN

(Vε(x) − m)u2
ε(x) dx � εN

{
Ũ2(xε)

∫
RN

(V (x) − m) dx + o(1)
}

(3.48)

as ε → 0.
Now we estimate Γ (uε).
First, we consider a case N � 3. (Here we modify the argument in the proof

of [8, proposition 3.5] for this problem.) Defining ut
ε(x) = uε(x/t), we get from the

Pohozaev identity (2.2) that

lim
ε→0

Γ (ut
ε) = lim

ε→0

{
tN−2

2

∫
RN

|∇uε|2 dx + tN
∫

RN

mu2
ε

2
− F (uε) dx

}

=
(

tN−2

2
− (N − 2)tN

2N

) ∫
RN

|∇Ũ |2 dx, (3.49)
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lim
ε→0

dΓ (ut
ε)

dt
= lim

ε→0

{
N − 2

2
tN−3

∫
RN

|∇uε|2 dx + NtN−1
∫

RN

mu2
ε

2
− F (uε) dx

}

=
N − 2

2
tN−3

∫
RN

|∇Ũ |2 dx + NtN−1
∫

RN

mŨ2

2
− F (Ũ) dx (3.50)

and

lim
ε→0

d2Γ (ut
ε)

dt2
= lim

ε→0

{
(N − 2)(N − 3)

2
tN−4

∫
RN

|∇uε|2 dx + N(N − 1)tN−2

×
∫

RN

mu2
ε

2
− F (uε) dx

}

=
(

(N − 2)(N − 3)
2

tN−4 − (N − 1)(N − 2)
2

tN−2
) ∫

RN

|∇Ũ |2 dx,

(3.51)

uniformly for t ∈ (0, t0). Note that(
(N − 2)(N − 3)

2
tN−4 − (N − 1)(N − 2)

2
tN−2

)
t=1

< 0. (3.52)

This implies that a function Yε(t) = Γ (ut
ε) has a maximum at tε ∈ (0, t0) such that

limε→0 tε = 1. Now we estimate |tε − 1| for small ε > 0. Note that

∆uε − Vεuε + f(uε) = 0. (3.53)

Multiplying both sides of (3.53) by (x − xε) · ∇uε, we get

(Vεuε − muε)(x − xε) · ∇uε

= (∆uε − muε + f(uε))(x − xε) · ∇uε

= div
(

∇uε((x − xε) · ∇uε) − (x − xε)
|∇uε|2

2
+ (x − xε)

(
− mu2

ε

2
+ F (uε)

))

+
N − 2

2
|∇uε|2 + N

(
mu2

ε

2
− F (uε)

)
. (3.54)

Integrating (3.54) over R
N , we get from the exponential decay in proposition 3.7

that

O(εN ) =
∫

RN

(Vεuε − muε)((x − xε) · ∇uε) dx

=
N − 2

2

∫
RN

|∇uε|2 dx + N

∫
RN

mu2
ε

2
− F (uε) dx (3.55)

as ε → 0. Then, we see that

dΓ (ut
ε)

dt

∣∣∣∣
t=1

=
N − 2

2

∫
RN

|∇uε|2 dx + N

∫
RN

mu2
ε

2
− F (uε) dx = O(εN ) (3.56)

as ε → 0. By the mean-value theorem, there exists t̂ε > 0 between 1 and tε satisfying

0 =
dΓ (ut

ε)
dt

∣∣∣∣
t=tε

=
dΓ (ut

ε)
dt

∣∣∣∣
t=1

+ (tε − 1)
d2Γ (ut

ε)
dt2

∣∣∣∣
t=t̂ε

. (3.57)
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Then, it follows from (3.51), (3.52) and (3.56) that |tε − 1| = O(εN ) as ε → 0. Note
that there exists t′ε > 0 between 1 and tε satisfying

Γ (utε
ε ) = Γ (uε) + (tε − 1)

dΓ (ut
ε)

dt

∣∣∣∣
t=t′

ε

. (3.58)

From

lim
ε→0

dΓ (ut
ε)

dt

∣∣∣∣
t=t′

ε

= 0,

it follows that
Γ (utε

ε ) = Γ (uε) + o(εN ) as ε → 0. (3.59)

Note that Γ (u0
ε) = 0 and Γ (ut0

ε ) < 0 for small ε > 0. A result of [22] implies that
Γ (utε

ε ) � Em. Thus, we get that for small ε > 0,

Γ (uε) � Em + o(εN ). (3.60)

Then, combining (3.60) with (3.48), we get the required lower estimation for N � 3.
Second, we consider a case N = 2. We need to recall some notation and contents

stated in the proof of proposition 3.1. Now we define g̃ε(θ, s) : (0,∞) × (0,∞) → R

by

g̃ε(θ, s) = Γ (θuε(·/s)) =
θ2

2
‖∇uε‖2

L2 − s2
∫

R2
H(θuε) dx, (3.61)

where

H(t) ≡
∫ t

0
h(s) ds

and h(s) ≡ −ms + f(s). Note that

(g̃ε)θ(θ, s) = θ‖∇uε‖2
L2 − s2

∫
R2

h(θuε)uε dx,

(g̃ε)s(θ, s) = −2s

∫
R2

H(θuε) dx,

∂

∂θ

∫
R2

H(θuε) dx =
∫

R2
h(θuε)uε dx.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.62)

Using (3.10) and the strong convergence of uε(· + xε) to Ũ in H1(RN ), there exist
θ1 ∈ (0, 1) and θ2 ∈ (1, 2) such that

lim
ε→0

∂

∂θ

∫
R2

H(θuε) dx =
∂

∂θ

∫
R2

H(θŨ) dx � 1
2‖∇Ũ‖2

L2 > 0 for θ ∈ [θ1, θ2].

(3.63)
We also note that

lim
ε→0

∫
R2

H(θ1uε) dx =
∫

R2
H(θ1Ũ) dx < 0 (3.64)

and

lim
ε→0

∫
R2

H(θ2uε) dx =
∫

R2
H(θ2Ũ) dx > 0. (3.65)
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Then, there exists θε ∈ (θ1, θ2) such that

∫
R2

H(θuε) dx

⎧⎪⎨
⎪⎩

< 0 for θ ∈ [θ1, θε),
= 0 for θ = θε,

> 0 for θ ∈ (θε, θ2].
(3.66)

We also have, from (3.62), that

(g̃ε)s(θ, s)

⎧⎪⎨
⎪⎩

> 0 for θ ∈ [θ1, θε), s ∈ (0,∞),
= 0 for θ = θε, s ∈ (0,∞),
< 0 for θ ∈ (θε, θ2], s ∈ (0,∞).

(3.67)

Note that
lim
ε→0

∫
R2

H(uε) dx =
∫

R2
H(Ũ) dx = 0.

Then from (3.66), we see that limε→0 θε = 1. Note that

∆uε − Vεuε + f(uε) = 0. (3.68)

Multiplying both sides of (3.68) by (x − xε) · ∇uε, we see that

(Vεuε − muε)((x − xε) · ∇uε)

= (∆uε − muε + f(uε))((x − xε) · ∇uε)

= div
(

∇uε((x − xε) · ∇uε) − (x − xε)
|∇uε|2

2
+ (x − xε)H(uε)

)
− 2H(uε).

Then, from the exponential decay of uε(· + xε) in proposition 3.7, we get that∫
R2

H(uε) dx = −1
2

∫
R2

(Vεuε − muε)((x − xε) · ∇uε) dx = O(ε2) (3.69)

as ε → 0. By the mean-value theorem, there exists θ̂ε between 1 and θε satisfying

0 =
∫

R2
H(θεuε) dx =

∫
R2

H(uε) dx + (θε − 1)
∂

∂θ

∫
R2

H(θuε) dx

∣∣∣∣
θ=θ̂ε

.

Then from (3.63) and (3.69), we get that

|1 − θε| = O(ε2) as ε → 0. (3.70)

As in (3.8), there exists a small s0 > 0 such that, for sufficiently small ε > 0, we
see that

(g̃ε)θ(θ, s) = θ

(
‖∇uε‖2

L2 − s2
∫

R2

h(θuε)
θuε

u2
ε dx

)
> 0 for s ∈ [0, s0], θ ∈ (0, 2].

(3.71)
Let γε(t) = (θ(t), s(t)) : [0,∞) → R

2 be a piecewise linear curve joining

(0, s0) → (θε − ε4, s0) → (θε − ε4, 1) → (1 + ε4, 1) → (1 + ε4,∞)
if θ1 < θε � 1 < θ2,

(0, s0) → (1 − ε4, s0) → (1 − ε4, 1) → (θε + ε4, 1) → (θε + ε4,∞)
if θ1 < 1 � θε < θ2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.72)
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where each line segment in the image of γε is parallel to one of the axes. We take
0 ≡ t0 < t1 < · · · < t4 ≡ ∞ such that, for each i = 0, . . . , 4, γε(ti) is the end point of
a linear segment of the piecewise linear curve γε. Moreover, we see that the function
t �→ Γ (θ(t)uε(x/s(t))) is strictly increasing on (t0, t1), (t1, t2) by (3.71), (3.67),
respectively. We also see that the function is strictly decreasing on (t3, t4) by (3.67).
Then, we get that g̃ε(γε(0)) = 0, limt→∞ g̃ε(γε(t)) = −∞. From [22], we see that

max
t∈(0,∞)

g̃ε(γε(t)) � Em.

Moreover, there exists tε > 0 such that maxt∈(0,∞) g̃ε(γε(t)) is attained at γε(tε) =
(θ(tε), 1) satisfying θ(tε) ∈ [θε − ε4, 1 + ε4] if θ1 < θε � 1 < θ2, or θ(tε) ∈ [1 −
ε4, θε + ε4] if θ1 < 1 � θε < θ2, respectively. By the mean-value theorem, there
exists θ∗

ε between θ(tε) and 1 such that

g̃ε(θ(tε), 1) = g̃ε(1, 1) + (g̃ε)θ(θ∗
ε , 1)(θ(tε) − 1).

Now, using (3.70) and limε→0(g̃ε)θ(θ∗
ε , 1) = 0, we get that

g̃ε(θ(tε), 1) = Γ (uε) + o(ε2) as ε → 0.

Then, combining this with (3.48), we get the required lower estimation for N = 2.
In proposition 3.1, we take U ∈ Sm so that U(0) = maxW∈Sm W (0). Then, we
see that Ũ(0) = U(0) and from the strict decreasing property of Ũ , U ∈ Sm that
limε→0 xε = 0.

Lastly, we consider a case N = 1. Since Sm consists of one element U ∈ H1(R)
and, in addition, U(0) = T , where T > 0 is given in (F3), it follows that Ũ = U .
Now we denote u′

ε = duε/dx. Multiplying both sides of u′′
ε − Vεuε + f(uε) = 0 by

u′
ε, we get

(Vεuε − muε)(u′
ε) = (u′′

ε − muε + f(uε))(u′
ε)

= ( 1
2 |u′

ε|2 − 1
2mu2

ε + F (uε))′.

Integrating both sides from −∞ to x ∈ R, we get∫ x

−∞
(Vε(y) − m)uε(y)u′

ε(y) dy = 1
2 |u′

ε(x)|2 − 1
2mu2

ε(x) + F (uε(x)). (3.73)

Then, from the exponential decay property of uε(·+xε) and |∇uε(·+xε)| in propo-
sition 3.7 and that u′

ε(xε) = 0, we deduce that

| 12mu2
ε(xε) − F (uε(xε))| = O(ε) as ε → 0. (3.74)

Then, since limε→0 uε(xε) = T and mT − f(T ) < 0, it follows that |uε(xε) − T | =
O(ε) as ε → 0.

Now we define

µε = min
{ ∫ ∞

xε

1
2 |∇uε|2 + 1

2mu2
ε − F (uε) dx,

∫ xε

−∞

1
2 |∇uε|2 + 1

2mu2
ε − F (uε) dx

}
.

Then, it follows that 2µε � Γ (uε), and we may assume that

µε =
∫ ∞

xε

1
2 |∇uε|2 + 1

2mu2
ε − F (uε) dx.
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As in the proof of proposition 3.1, we take ρ > 0 such that x ∈ [−ρ, 0),

8x6 + 1
2m(x4 + T )2 − F (x4 + T ) < 0. (3.75)

Then, we define qε : R → R by

qε(x) =

⎧⎪⎨
⎪⎩

uε(x + xε), x ∈ [0,∞),
x4 + uε(xε), x ∈ [−ρ, 0],
ρ4 + uε(xε), x ∈ (−∞,−ρ]

(3.76)

and γε : (0,∞) → H1(R) by

γε(t)(x) = qε(|x| − ln t) and γε(0) = 0.

We see that γε : [0,∞) → H1(R) is continuous. Define

Qε(y) =

{
|u′

ε(y + xε)|2 + mu2
ε(y + xε) − 2F (uε(y + xε)) for y � 0,

|q′
ε(y)|2 + mq2

ε(y) − 2F (qε(y)) for y � 0.
(3.77)

Then, we obtain that

Γ (γε(t)) = 2µε +
∫ 0

− ln t

Qε(x) dx (3.78)

and that for t ∈ (0,∞) \ {eρ},

dΓ (γε(t))
dt

=
Qε(− ln t)

t
, (3.79)

where

Qε(− ln t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|u′
ε(− ln t + xε)|2 + mu2

ε(− ln t + xε) − 2F (uε(− ln t + xε))
for 0 < t � 1,

16(− ln t)6 + m((− ln t)4 + uε(xε))2 − 2F ((− ln t)4 + uε(xε))
for 1 � t < eρ,

m(ρ4 + uε(xε))2 − 2F (ρ4 + uε(xε)) for t > eρ.
(3.80)

Thus, Γ (γε(t)) is a C1-function for t ∈ (0, eρ). From (3.75) and (F3), we get that

lim
ε→0

dΓ (γε(t))
dt

{
> 0 for 0 < t < 1,

< 0 for 1 < t < eρ.
(3.81)

Therefore, Γ (γε(t)) has a maximum at tε such that limε→0 tε = 1.
Suppose that there exists εn → 0 such that limn→∞ |xεn | > 0. For the sake of

convenience, we write ε for εn. Then, limε→0 Vε(y + xε) = m whenever |y| � |ln tε|.
Since u′′

ε = Vεuε − f(uε) and limε→0 uε(xε) = T , we see from (F3) that if ε > 0 is
small, u′′(xε + x) < 0 for |x| � |ln tε|. Then, we see that if |y| � |ln tε| and ε > 0 is
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sufficiently small,

dQε(y)
dy

=

⎧⎪⎨
⎪⎩

2u′
ε(y + xε){2muε(y + xε) − 2f(uε(y + xε))

+(Vε(y + xε) − m)uε(y + xε)} � 0 for y � 0,

8y3{12y2 + m(y4 + uε(xε)) − f(y4 + uε(xε))} � 0 for y � 0.

(3.82)
This implies that, for small ε > 0, Qε(y) is C1 and increasing on the set |y| � |ln tε|.
Since Qε(− ln tε) = 0, it follows that |Qε(0)| � |Qε(y)| for any y between 0 and
− ln tε. Then, since Qε(0) = mu2

ε(xε) − 2F (uε(xε)), we see from (3.74) that

|Γ (γε(tε)) − 2µε| =
∣∣∣∣
∫ 0

− ln tε

Qε(y) dy

∣∣∣∣
� |Qε(0)||ln tε|
= |mu2

ε(xε) − 2F (uε(xε))||ln tε|
� cε|ln tε|, (3.83)

for some constant c > 0. Since Γ (γε(0)) = 0 and limt→∞ Γ (γε(t)) = −∞, we see
from the results in [23] that Γ (γε(tε)) � Em. Now we see from proposition 3.1, (3.83)
and (3.48) that

Em +
ε

2

(
Ũ2(0)

∫
R

(V (x) − m) dx + o(1)
)

� Dε � Γε(uε)

= Γ (uε) + 1
2

∫
R

(Vε(x) − m)u2
ε(x) dx

� 2µε + 1
2

∫
R

(Vε(x) − m)u2
ε(x) dx

= Γ (γε(tε)) + 1
2

∫
R

(Vε(x) − m)u2
ε(x) dx + o(ε)

� Em +
ε

2

(
Ũ2(xε)

∫
R

(V (x) − m

)
dx + o(1)) (3.84)

as ε → 0. Since ∫
R

(V (x) − m) dx < 0

and Ũ(0) = supx∈R
Ũ(x) > Ũ(y) for any |y| > 0, we get that a maximum point xε

of uε converges to 0 as ε goes to 0.

We note that Sm is compact. In particular, for N = 1, Sm consists of one element.
Thus, there exists a solution U ∈ Sm satisfying U(0) = supW∈Sm

W (0). Now,
combining propositions 3.6, 3.7 and 3.8, we complete the proof of theorem 1.1.

4. An extension of the existence result in theorem 1.1

Recall the definition of ζ given in the proof of proposition 3.1. Then, we introduce
the following condition.
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(V3’) There exist ε0 > 0 and x̃ε ∈ R
N for ε ∈ (0, ε0) such that

max
t∈[0,t0]

∫
RN

(Vε(x) − m)(ζ(t)(x − x̃ε))2 dx � 0 for all 0 < ε � ε0.

Proposition 2.2 states that (V3) implies (V3′). Now we have the following, more
general, existence result.

Theorem 4.1. Assume that conditions (V1), (V2), (V3′), and (F1)–(F3) hold.
Then, for sufficiently small ε > 0, there exists a positive solution wε of (1.8) such
that, for a maximum point xε of wε, a transformation uε(x) ≡ wε((x + xε)/ε)
converges (up to a subsequence) uniformly to a radially symmetric least energy
solution of

∆u − mu + f(u) = 0, u > 0, u ∈ H1(RN ). (4.1)

Moreover, there exist constants c, C > 0, independent of small ε > 0, such that

uε(x) + |∇uε(x)| � C exp(−c|x|), x ∈ R
N .

Before proving theorem 4.1, we explore some typical V satisfying condition (V3′).

Proposition 4.2. Suppose that the potential V satisfies conditions (V1) and (V2).
Then, condition (V3′) holds when one of the following is satisfied.

(i) V (x) � m for any x ∈ R
N .

(ii) There exists x0 ∈ R
N such that, for any r ∈ (0,∞),∫

SN−1
(V (rx + x0) − m) dσ(x) � 0,

where dσ is the standard volume element on the unit sphere SN−1.

(iii) When N = 1, it holds that V − m ∈ L1(R),∫
R

(V (x) − m) dx = 0,

Ṽ − m̃ ∈ L1(R) and ∫
R

(Ṽ (x) − m̃) dx �= 0,

where

Ṽ (x) =
∫ x

0
(V (y) − L) dy

and lim|x|→∞ Ṽ (x) = m̃.

Proof. First note from the construction of ζ in proposition 3.1 that there exist
C, c > 0, independent of ε > 0, satisfying ζ(t)(x) � C exp(−c|x|) for x ∈ R

N . Thus,
(Vε − m)ζ2(t)(· − x̃ε) ∈ L1(RN ) for any t ∈ (0, t0).

(i) This case is obvious since ζ(t)(x) > 0 for t > 0 and x ∈ R
N .
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(ii) Note that a function ζ(t) is radially symmetric for t ∈ (0, t0). Thus, we see
that ∫

RN

(Vε(x) − m)ζ2(t)(x − εx0) dx � 0

for any t ∈ (0, t0). This proves the claim with x̃ε = εx0 in case (ii).

(iii) For t ∈ (0, t0), we denote W (x) = ζ(t). From the construction of ζ in propo-
sition 3.1, we see that W is piecewise C1, that for some M > 0, independent
of t ∈ (0, t0), ‖W‖L∞ � M , and that there exists x0 > 0, independent of
t ∈ (0, t0), satisfying W ′(x)x < 0 for |x| � x0 − 1. Moreover, we see that∫

R

(Vε(x) − m)W (x ± x0) dx

= ε

∫
R

(V (x) − m)W (εx ± x0) dx

= ε

{
Ṽ (x)W (εx ± x0)|∞−∞ −

∫
R

Ṽ (x)
dW (εx ± x0)

dx
dx

}

= −ε2
∫

R

Ṽ (x)W ′(εx ± x0) dx

= −ε2
{ ∫

R

(Ṽ (x) − m1)W ′(εx ± x0) dx + m1

∫
R

W ′(εx ± x0) dx

}

= −ε2
∫

R

(Ṽ (x) − m1)W ′(εx ± x0) dx

= −ε2
{ ∫

R

(Ṽ (x) − m1)(W ′(εx ± x0) − W ′(±x0)) dx

+ W ′(±x0)
∫

R

(Ṽ (x) − m1) dx

}
.

(4.2)

As in the proof of proposition 2.2, we see that

lim
ε→0

∫
R

(Ṽ (x) − m1)(W ′(εx ± x0) − W ′(±x0)) dx = 0.

Take one of the points ±x0 such that

W ′(±x0)
∫

R

(Ṽ (x) − m1) dx > 0.

Then, it follows that, for small ε > 0,∫
R

(Vε(x) − m)W (x + x0) dx < 0 or
∫

R

(Vε(x) − m)W (x − x0) dx < 0.

This proves the claim.
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Condition (iii) in the above proposition was introduced by Ambrosetti and Badi-
ale in [2], where they proved that if (iii) holds, then (1.4) has two distinct families
of solutions bifurcating from the trivial solutions for small ε > 0 when f(t) = tp,
p ∈ (1, 5).

Proof of theorem 4.1. Note that

Dε = max
t∈[0,t0]

Γε(ζ(t)(· − x̃ε)) � Em.

Now we consider the two following cases.

Case 1. If there exists a critical point uε of Γε on the path ζ(t)(· − x̃ε) ∈ Xd, we
get the decay property of uε in a similar way as for the proof of proposition 3.7.

Case 2. Suppose that there exist no critical points of Γε on a set

{ζ(t)(· − x̃ε) | t ∈ [0, t0)} ∩ Xd.

By considering a pseudo-gradient vector field on a neighbourhood Zε of

{ζ(t)(· − x̃ε) | t ∈ [0, t0]} ∩ Xd for Γε,

we can deform a part of the curve {ζ(t)(· − x̃ε) | t ∈ [0, t0]} inside Xd into a
continuous curve ζε : [0, t0] → H1(RN ) such that

Γε(ζε(t)) < Em for any t ∈ [0, t0].

Then, setting D′
ε = maxt∈[0,t0] Γε(ζε(t)), we see that D′

ε < Em for sufficiently small
ε > 0.

Now we note that, in the proofs of propositions 3.2 and 3.3, the same arguments
hold with (V1) and (V2) but not with (V3). Then, as for the proof of proposition 3.5,
we obtain a sequence {un}n in Xd ∩ Γ

D′
ε

ε for fixed, sufficiently small ε > 0 such that
limn→∞ Γ ′

ε(un) = 0. To get a strong convergence of {un}n to some uε in H1(RN ),
as in proposition 3.6, we only need a property lim supn→∞ Γε(un) < Em, which
follows from D′

ε < Em and {un}n ⊂ Xd ∩ Γ
D′

ε
ε . Finally, we get the decay property

of uε in a similar way as in the proof of proposition 3.7. This proves the claim.
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