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In a wireless visual sensor network consisting of wireless, battery-powered, and field-of-view (FoV) overlapping and stationary
visual sensors, trade-offs exist between extending network lifetime and enhancing its sensing accuracy. Moreover, aggregating
individual inferences from each sensor is essential to generate a globally consistent inference, because these individual inferences
can be biased by noise or other unexpected conditions. Those challenges can be addressed by reducing the amount of data
transmission among the sensors and by activating, in a timelymanner, only a desirable camera subset for given targets. In this paper,
we initialize an optimal data transmission path among visual sensors using the inference tree method, which is vital for collecting
individual inferences and building a global inference. Based on the optimal data transmission path, we model the camera selection
problem in a cooperative bargaining game. In this game, based on the serial dictatorial rule, camera sensors cooperatively attempt
to raise the overall sensing accuracy by sequentially deciding their own mode between “sleep” and “active” in descending order
of their bargaining power. Simulated results demonstrate that our proposed approach outperforms other alternatives, resulting in
reduced resource overhead and improved network lifetime and sensing accuracy.

1. Introduction

There has been an increasing necessity to extract relevant
information for multiple targets moving around inside wide
areas for surveillance purposes. Moreover, these require-
ments must be fulfilled in a cost-efficient manner. A visual
sensor is primarily equipped with an image sensing device,
several processing units, communication facilities, and a set
of batteries. This composition is very suitable for surveil-
lance, because of the advantageous characteristics such as a
wide monitoring area, rich visual information, and human-
friendly data. Following the development of these inexpen-
sive, powerful, and easily-deployable visual sensors, wire-
less visual sensor networks (WVSN) consisting of wireless,
battery-powered, and field-of-view (FoV) overlapping and
stationary visual sensors have been widely employed for
surveillance in public places [1, 2]. Comparedwith other types
of wireless sensors, visual sensors are impacted more by their
limited bandwidth, lifespan, computation, and storage capa-
bilities, because they contend with high-dimension data sets

containing rich information generated from images [3].Thus,
it will be necessary to initialize an optimal data transmission
path to reduce the amount of data transmission among the
sensors for a global inference and to efficiently activate only
selected cameras, which optimizes their collective coverage
of given targets in a timely manner.The latter is referred to as
Camera Selection (CS).

In this paper, we initialize an optimal data transmis-
sion path among visual sensors utilizing the inference tree
method, which is a key component in aggregating individual
inferences and building a global inference with minimized
transmissions [2]. Based on the optimal transmission path,
every visual sensor can exchange data with other sensors.
Additionally each sensor can autonomously switch its mode
between “sleep” (in sleep mode, the sensor stops capturing
data; it will continue to transmit data) and “active” only with
local knowledge, during advanced target analysis beyond
basic tracking. This local rationale can be feasible under
the practical assumption that FoV overlapping cameras can
directly communicate with each other; additionally, the view
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Figure 1: A wireless visual sensor network.

of a target is shared only between neighboring cameras.
Thus, the camera’s local knowledge is sufficient to measure
its sensing contribution towards the global sensing accuracy,
considering its neighbors’ contributions. As discussed in [4,
5], each of the multiple cameras can cooperatively bargain
for an optimal collective coverage. Our proposed approach
utilizes the serial dictatorial rule, in which preferred cameras
are prioritized to select their mode in earlier steps to achieve
efficient computation.

The remainder of this paper is organized as follows.
Section 2 introduces and discusses several advanced CS
solutions; Section 3 describes the inference tree method used
to initialize the data transmission path; Section 4 models a
CS problem in a cooperative game; Section 5 describes our
proposed serial dictatorial rule-based solution to force every
camera to select its optimal mode using its local knowledge;
Section 6 simulates and analyzes our approach in several net-
work performance metrics and resource overhead; Section 7
compares our solution with its representative alternatives
employing our concerned metrics; and Section 8 concludes
the paper.

2. Related Work

Because of the lack of CS-related studies at this time, we
note that several considerable research efforts have proposed
comparable solutions, mainly based on greedy selection (GS)
or potential game (PG).

The GS-based approaches select a camera best satisfying
the criteria of interest at the time until 𝑙 cameras are selected
for a certain 𝑙 that has been heuristically determined in
advance. For example, a candidate camera may be selected
based on the extent to which it improves the current visual
hull and thus reduces occlusion [6, 7]; candidate camerasmay
also be selected based on the degree to which their images
are different from images of already-selected cameras, with
a goal of producing varied images that reduce redundancies
[8]. Although this selection process may provide richer
information about targets, it does not adaptively copewith the
dynamics in the targets’ locations because of the stationary 𝑙.

For seamless tracking, the PG studies assign a camera
to every target based on the maximum utility between the

camera and the associated target. A camera’s utility for a target
is quantified by how large the camera records the target and
its face in stationary camera networks [4] or the degree to
which the camera can closely observe the target in active
camera networks [5]. Until a set of probabilities describing
how effectively a target is tracked by a camera for every
camera and every target is converged, a set of these utilities
and the probability set are alternatingly updated; additionally,
they both influence each other. This one-for-one selection
could efficiently produce results for tracking or locating given
targets; however, it may be insufficient to produce advanced
target information, such as multitarget interaction analysis.

All of the discussed techniques have approached a CS
solution in a centralized manner, with global knowledge
of every camera and every target. To obtain such global
knowledge, high bandwidth consumption will necessarily
occur at a central operator in centrally controlled networks
or at every camera sensor in distributed controlled networks.
To avoid such dissipation, our approach employs only limited
knowledge; however, it aims to perform similarly to, or
improve, the previously mentioned alternatives.

3. Inference Tree Method for Initializing
Transmission Path

A WVSN can be described as displayed in Figure 1.
Figure 1(a) displays the configuration of aWVSN, Figure 1(b)
illustrates a physical topology based on wireless connection
reachability (or geometric proximity), and Figure 1(c) rep-
resents a logical topology based on the FoV overlapping
constraint. In this paper, however, we assume that FoV
overlapping cameras can directly communicate with each
other.Thus, the physical topology graph can be ignored.This
assumption is feasible in practical applications and enables
us to focus on the data transmission and camera selection
challenges.

As displayed in Table 1 [9], power consumption costs are
higher for a broadcasting network compared with a unicas-
ting network. In order to minimize data transmissions for
building a global inference in aWVSN,we need to convert the
logical topology from a broadcasting/multicasting network
to a unicasting network. To initialize a transmission path as
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Table 1: Energy consumption for IEEE 802.11 11Mbps wireless
network card.

Network Data Energy cost per bit (uWs/byte)

Broadcast Send 2.1
Receive 0.26

Unicast Send 0.48
Receive 0.12

a unicasting network, we use the inference tree method [2];
the process is illustrated in Figure 2. When a logical topology
is provided as an input, a weight value is calculated for each
edge based on the amount of FoV overlapping between two
visual sensors. The result of this initial step is a weighted
graph. From theweighted graph, amaximum spanning tree is
produced, and the center node of themaximum length path is
selected as a root node. Utilizing the root node selected in the
second step, the weighted graph is converted into aminimum
depth tree employing a breadth-first search algorithm. The
result of this step is an initial inference tree. Lastly, it is
optimized with up and down actions necessary to build a
balanced tree.Weutilized the final resulting tree as an optimal
data transmission path for the WVSN.

The results from our implementation are displayed in
Figure 3. Figure 3(a) illustrates that there is a significant
reduction in the number of data transmissions for both the
leaf and internal nodes. Figure 3(b) illustrates that energy
consumption for data transmissions has decreased for all
nodes. Figures 3(a) and 3(b) successfully support that the
inference tree method is effective for initializing an optimal
data transmission path in WVSN.

4. Cooperative Game for CS

Consider 𝑐 cameras, indexed by 𝑖, statically deployed, and 𝑡

targets, indexed by 𝑗, randomlymoving inside a geographical
area. As previously stated, we also assume that any two
neighboring cameras are able to communicate with each
other if their FoVs overlap. The locations of cameras are
initially calibrated and stationarily fixed. The locations of
targets are updated based on any object localization algorithm
of [10], utilizing the most recently recorded images at each
time instant, provided to their associated cameras.Whenever
new locations are provided, the expected target locations
at the next time instant are also estimated by the extended
Kalman filter as in [11]. At this point, every camera 𝑖 is aware
of the set of its observable targets tomove into its FoV, termed
𝑇
𝑖
.
Illustration of parameter notations in camera 𝑖’s FoVwith

targets 𝑗 and 𝑗󸀠 can be described as displayed in Figure 4. Safe
region sr

𝑖
is the set of every 2D point inside the dotted-line

square, where a target is seen observed safely enough. Unsafe
distance 𝑙

𝑗
of 𝑗 not located in sr

𝑖
is the distance from the

center of sr
𝑖
to 𝑗’s location. Distinction angle 𝜃

𝑗𝑗
󸀠 of 𝑗 and 𝑗󸀠

is the included angle between the 𝑖-to-𝑗 vector and the 𝑖-to-𝑗󸀠
vector.

Declaring that 𝑚
𝑖
represents the mode of camera 𝑖

between 0 for sleep (in sleepmode, the sensor stops capturing
data; it will continue to transmit data) and 1 for active, we
modeled our defined CS problem in the form of a classic,
normal game given as ⟨player, action, utility⟩ in [12]. If
function utility is identical for every player, the players are
encouraged to be cooperative tomaximize their shared utility
[13]. These conditions are analogous to a CS where the
objective, from the point of view of a game designer, is to
obtain a minimal set of active cameras that can achieve a
high sensing accuracy for given targets, equal to the accuracy
provided by an entire network [14]. To enable every camera
to autonomously select its mode for the objective, we replace
the given game form by ⟨{𝑖, 𝑗}, 𝑚

𝑖
, 𝑈
𝑔
⟩, where𝑈

𝑔
is the global

utility equally shared within the entire network and can be
quantified as follows:

𝑈
𝑔
({𝑚
𝑖
}) =

𝑡

∑

𝑗=1

𝑈
𝑗
({𝑚
𝑖
}
𝑗
) . (1)

For {𝑚
𝑖
}
𝑗
, the mode set of the cameras, which are able to

observe target 𝑗, (1) quantifies the global sensing accuracy
given 𝑡 targets by summing the extent to which each target 𝑗 is
well observed by its associated cameras in global target utility
𝑈
𝑗
. This value generally becomes larger as more cameras

are active, but not necessarily. A small number of images
may omnidirectionally cover a target; conversely, images that
are too similar, produced by closely located and similarly
oriented cameras, redundantly dissipate resources to transmit
and process these images. By setting the upper bound for
global target utilities to 1 to restrict the redundancies as in
(3), we observe that the global target utility of target 𝑗 is
constructed by individual target utilities {tu

𝑗
} obtained by

each of the associated cameras as in the following equation:

𝑈
𝑗
({𝑚
𝑖
}
𝑗
) = ∑

{𝑚
𝑖
}
𝑗

tu
𝑗
(𝑚
𝑖
) , (2)

such that

𝑈
𝑗
({𝑚
𝑖
}
𝑗
) ≤ 1, (3)

tu
𝑗
(𝑚
𝑖
) = 𝑚

𝑖
safe
𝑖
(𝑗)

{

{

{

1 if 󵄨󵄨󵄨󵄨𝑇𝑖
󵄨󵄨󵄨󵄨 = 1

min
𝑗
󸀠
∈𝑇
𝑖
\𝑗

dist
𝑖
(𝜃
𝑗𝑗
󸀠) if 󵄨󵄨󵄨󵄨𝑇𝑖

󵄨󵄨󵄨󵄨 ≥ 2,
(4)

safe
𝑖
(𝑗) =

{

{

{

1 if 𝑗 ∈ sr
𝑖

1

𝑙
𝑗

if 𝑗 ∉ sr
𝑖
,

(5)

dist
𝑖
(𝜃
𝑗𝑗
󸀠) =

{{{

{{{

{

1 if 𝜃
𝑗𝑗
󸀠 ≥

90

𝐴
𝑖

sin (𝐴
𝑖
𝜃
𝑗𝑗
󸀠) if 𝜃

𝑗𝑗
󸀠 <

90

𝐴
𝑖

.

(6)

The target utility of target 𝑗 by camera 𝑖 represents the
smallest likelihood that 𝑗 is sufficiently observed without any
occlusion in 𝑖’s FoV according to 𝑖’s mode. This likelihood is
determined utilizing three values: 𝑚

𝑖
of whether or not 𝑖 is
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Figure 2: The process of inference tree method.
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Figure 3: The results of the inference tree method.
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Figure 4: Illustration of parameter notations in camera 𝑖’s FoV with
targets 𝑗 and 𝑗󸀠. Safe region sr

𝑖
is the set of every 2D point inside the

dotted-line square, where a target is observed safely enough. Unsafe
distance 𝑙

𝑗
of 𝑗 not located in sr

𝑖
is the distance from the center of sr

𝑖

to 𝑗’s location. Distinction angle 𝜃
𝑗𝑗
󸀠 of 𝑗 and 𝑗󸀠 is the included angle

between the 𝑖-to-𝑗 vector and the 𝑖-to-𝑗󸀠 vector.

active, safei of the degree to which 𝑗 can be safely observed
by 𝑖, and dist

𝑖
of the degree to which 𝑗 is occluded by other

targets in 𝑖’s FoV, as in (4). As stated in Figure 4, 𝑗 can be
safely observed if it is located in 𝑖’s safe region sr

𝑖
; otherwise,

the safety value for 𝑗 inversely decreases as 𝑗’s unsafe distance
𝑙
𝑗
becomes greater as in (5). To measure the occluded degree

of 𝑗 in 𝑖’s FoV, we define the distinction probability between
images simultaneously taken by 𝑗 and 𝑗󸀠 as in (6), where 𝜃

𝑗𝑗
,

is the distinction angle of 𝑗 and 𝑗󸀠 defined in Figure 4 and 𝐴
𝑖

is the scaling factor of 𝑖, because a greater 𝜃
𝑗𝑗
󸀠 will result in

greater reduction of the occlusion between 𝑗 and 𝑗󸀠. Utilizing
these definitions, both 𝑈

𝑗
and tu

𝑗
can have a value between

0 and 1, indicating that even a single camera can provide a
thorough observation of a target if the camera safelymonitors
the target without occlusion, as we have assumed.

Forthwith, we discuss the extent to which an individual
camera contributes to a certain global utility. Camera utility
of camera 𝑖 evaluates its contribution degree to observe the set
of its observable targets 𝑇

𝑖
according to 𝑚

𝑖
by summing the

target utilities of every 𝑗 in 𝑇
𝑖
as in the following equation:

cu
𝑖
(𝑚
𝑖
) = ∑

𝑗∈𝑇
𝑖

tu
𝑗
(𝑚
𝑖
) . (7)

The equations from (4) to (7) reflect the following
characteristics that only camera sensors can possess.

(i) Every camera can be assumed to have, in its FoV,
its own safe region where any target is observable
in sufficient detail to give desirable information with
minimal distortion.

(ii) Owing to the 3D-to-2D projection of imaging, the
occlusion among multiple targets in a camera’s FoV
obstructs the extraction of the targets’ information
[3, 4].

(iii) The interaction analysis among multiple targets pro-
vides more relevant information about the targets
beyond their locations [15].

While (i) and (ii) are, respectively, represented by (5) and (6)
for (4), more relevant information is provided by cameras
with a higher camera utility, which becomes greater as it
observes more targets or its associated target utilities are
greater, as in (7).

Subsequently, every camera selects its mode to cooper-
atively maximize their payoff and the global utility 𝑈

𝑔
, for

the least number of active cameras while considering the
condition (3). The mode selection process, to be discussed
in the following section, is greatly enhanced by taking the
camera utilities into account.

5. Serial Dictatorial Rule-Based
Bargaining Solution

According to [13], the serial dictatorial rule is a sequence
of dictatorial rules conducted by individual players whose
exercising order is statically arranged by their bargaining
powers. By evaluating camera utilities provided in (7), we
consider that a camera has greater bargaining power if it
observes a greater number of targets, in a less occluded
manner, in the corresponding safe region. Given that all
cameras possessing greater bargaining power have already
determined their modes and a camera must presently select
a mode, it will select the mode maximizing its payoff, 𝑈

𝑔
,

according to the dictatorial rule. The camera is under the
assumption that other cameras that have not determined
their modes are in sleep mode [14]. This bargaining process
is serially performed until every camera determines its mode
while communicating with neighboring cameras as follows.

5.1. Order Cameras by Their Camera Utilities. Given esti-
mated locations of 𝑇

𝑖
, every camera 𝑖 computes the target

utilities of every target in 𝑇
𝑖
and its own camera utility

assuming 𝑚
𝑖
= 1 and subsequently transmits them to its

neighboring cameras. Thereafter, 𝑖 obtains its position in the
dictatorial ordering list of it and its neighbors in descending
order of their camera utilities, while initializing the mode set
for the list,𝑀

𝑖
= {0}.

5.2. Select the Current Mode. Prior to mode selection, every
𝑖 waits for all the modes of its more bargaining-powerful
neighbors to be announced while updating𝑀

𝑖
if it is not the

first on the list. Otherwise, it instantly assumes itsmode by (8)
for𝑀𝑚𝑖

𝑖,𝑗
which is the target 𝑗’s associated subset of𝑀

𝑖
where

only the mode of 𝑖 is replaced by𝑚
𝑖
. Consider

𝑚
𝑖
=
{

{

{

1 if ∑
𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
1

𝑖,𝑗
) − 𝑈
𝑗
(𝑀
0

𝑖,𝑗
)) > 0

0 otherwise.
(8)

A camera 𝑖 will decide to be active only if it can improve
the total of the global target utilities for every target of 𝑇

𝑖

by its contribution. Specifically, a camera covers its FoV only
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if at least one target in its FoV is not sufficiently observed at
the moment, indicating that it will not be responsible for the
targets already well covered by other cameras. Subsequent to
thismode decision, 𝑖 announces its selectedmode followed by
𝑖; accordingly every neighbor, termed 𝑖󸀠, updates𝑀

𝑖
󸀠 with 𝑖’s

newmode and drops every 𝑗 such that𝑈
𝑗
(𝑀
𝑖
󸀠
,𝑗
) = 1 obtained

by the new𝑀
𝑖
󸀠 from 𝑇

𝑖
󸀠 for rapid computation.

This local reasoning with limited knowledge soundly
and completely extends maximizing 𝑈

𝑔
for the following

theorem.

Theorem 1. For every camera 𝑖 with its mode 𝑚
𝑖
, it always

holds that

𝑈
𝑔
(𝑀
∗
) − 𝑈
𝑔
(𝑀
∗,−𝑖

) ≥ ∑

𝑗∈𝑇
𝑖

(𝑈
𝑔
(𝑀
𝑚
𝑖

𝑖,𝑗
) − 𝑈
𝑔
(𝑀
𝑚
−𝑖

𝑖,𝑗
)) ,

(9)

where 𝑀∗ is the bargained mode set for every camera, 𝑚
−𝑖
is

the opposite mode of𝑚
𝑖
,𝑀∗,−𝑖 is the mode set where only𝑚

𝑖
is

replaced by𝑚
−𝑖
in𝑀∗, and𝑀

𝑖,𝑗
is 𝑖’s assumedmode set of 𝑖 and

𝑖’s neighbors associated with target j for the bargaining process.

Proof. The following equation (10) holds by the global utility
definition and (11) is derived because the change of camera 𝑖’s
mode affects only the global target utilities of every 𝑗 in 𝑇

𝑖
.

As𝑀∗
𝑗
and𝑀∗,−𝑖

𝑗
are, respectively, restated as𝑀𝑚𝑖

𝑖,𝑗
and𝑀𝑚−𝑖

𝑖,𝑗
,

we must demonstrate that (12) always holds for every 𝑖 with
𝑇
𝑖
for our claim. Consider that

𝑈
𝑔
(𝑀
∗
) − 𝑈
𝑔
(𝑀
∗,−𝑖

) =

𝑡

∑

𝑗=1

(𝑈
𝑗
(𝑀
∗

𝑗
) − 𝑈
𝑗
(𝑀
∗,−𝑖

𝑗
))

(10)

𝑈
𝑔
(𝑀
∗
) − 𝑈
𝑔
(𝑀
∗,−𝑖

) = ∑

𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
∗

𝑗
) − 𝑈
𝑗
(𝑀
∗,−𝑖

𝑗
)) ,

(11)

∑

𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
∗

𝑗
) − 𝑈
𝑗
(𝑀
∗,−𝑖

𝑗
)) ≥ ∑

𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
𝑚
𝑖

𝑖,𝑗
) − 𝑈
𝑗
(𝑀
𝑚
−𝑖

𝑖,𝑗
)) .

(12)

To more easily understand the claim, we restate the target
argument as the following if-then rule.

By the nature of our bargaining process, 𝑈
𝑔
(𝑀
∗
) ≥

𝑈
𝑔
(𝑀
∗,−𝑖

) always holds for every camera 𝑖. Given the con-
dition, (12) also always holds for every 𝑖.

Subsequently, we verify this claim for both its soundness
and completeness.

Soundness. We demonstrate that (12) and 𝑈
𝑔
(𝑀
∗
) ≥

𝑈
𝑔
(𝑀
∗,−𝑖

), respectively, hold in the following two cases.

(a) case of𝑚
𝑖
= 1 and𝑚

−𝑖
= 0.

When 𝑖 decides its mode as active while assuming
that every mode for the less bargaining-powerful
neighboring cameras is sleep, it is believed that it can
improve the global target utility of any in𝑇

𝑖
. Let us say

that {𝑗󸀠} is the target set each global target utility of
which is actually raised by 𝑖. The difference resulting
from 𝑖’s mode change is given as follows:

∑

{𝑗
󸀠
}

∑

𝑚
𝑖
󸀠 ∈𝑀
𝑖,𝑗
󸀠 \𝑚𝑖

tu
𝑗
󸀠 (𝑚
𝑖
󸀠) . (13)

Because any of less bargaining-powerful neighbors
could be active to contribute to the improvement of
the concerned global target utilities, 𝑀∗

𝑗
󸀠 is likely to

contain an equal or greater number of active cameras
than 𝑀

𝑖,𝑗
󸀠 . Thus, (12) is valid. In addition, (13) is

always greater than or equal to 0 by the definition
of the target utility, which eventually leads to the
conclusion that 𝑈

𝑔
(𝑀
∗
) ≥ 𝑈
𝑔
(𝑀
∗,−𝑖

) is valid.

(b) Case of𝑚
𝑖
= 0 and𝑚

−𝑖
= 1.

When 𝑖 determines its mode as sleep, it believes
that every 𝑗 in 𝑇

𝑖
is sufficiently covered by more

bargaining-powerful neighbors, which derives
∑
𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
1

𝑖,𝑗
) − 𝑈

𝑗
(𝑀
0

𝑖,𝑗
)) = 0 by (8). Similarly, it

holds that ∑
𝑗∈𝑇
𝑖

(𝑈
𝑗
(𝑀
∗

𝑗
) − 𝑈
𝑗
(𝑀
∗,−𝑖

𝑗
)) = 0 regardless

of the other modes in 𝑀
∗

𝑗
. Thus, (12) is valid in this

case and 𝑈
𝑔
(𝑀
∗
) = 𝑈
𝑔
(𝑀
∗,−𝑖

) is valid, too.

Completeness. We demonstrate that 𝑀∗ exists, bargained by
our bargaining process satisfying (12).

Consider any 𝑀
∗ where every mode is deterministi-

cally decided by its associated camera at its order, without
possessing actual knowledge of the entire 𝑀∗. For every 𝑖,
regardless of its decided mode, the entire mode set 𝑀∗

𝑗
for

any target 𝑗 will have more or the same number of active
cameras compared to the virtual𝑀

𝑖,𝑗
because 𝑖 assumes that

its less bargaining-powerful cameras adopt the sleep mode,
as we discussed above. Therefore, the difference resulting
from its mode change in 𝑀

∗

𝑗
would always be equal to or

greater than in 𝑀
𝑖,𝑗
. In summary, 𝑀∗ can be efficiently and

deterministically obtained by (8) and any𝑀∗ satisfies (12) for
every camera.

Therefore, the selected mode by (8) with limited knowl-
edge for every camera optimizes the global utility by
Theorem 1.

6. Simulations and Analyses of Our Approach

In this section, we evaluate our proposed serial dictatorial
rule-based game for CS utilizing several network perfor-
mance metrics in different simulations and quantitatively
analyze the complexity required to achieve each step of our
approach’s design.

6.1. Simulated PerformanceAnalysis. Our proposed approach
has been simulated in the following multicamera and multi-
target environment.
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(a) Dense deployment of 𝑑 = 7
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(b) Sparse deployment of 𝑑 = 3

Figure 5: Two different camera deployment environments with 𝑑 = 7 of the left and 𝑑 = 3 of the right.
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(a) Distantly located targets
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(b) Closely located targets
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(c) Error case

Figure 6: Two successful and a single-failed examples of 𝑑 = 7 and 10 targets.

(i) 16 stationary cameras of different FoVs, labeled 1
through 16, are deployed and calibrated in a square-
shape area of 230 × 230 cells as in Figure 5.

(ii) Every camera is provided with its own safe region and
FoV center point in advance.

(iii) The scaling factor 𝐴
𝑖
for every camera 𝑖 is fixed to

2, because we assume that any two targets having a
distinction angle of 45 ormore degrees in the camera’s
FoV can be perfectly and separately monitored.

(iv) Every camera is initially chargedwith 1000 power bars
and only dissipates a bar per time instance if it is
active.

(v) Themaximum neighboring density for every camera,
𝑑, is set to 7 as in Figure 5(a) or 3 as in Figure 5(b).

(vi) In a scenario, 10 or 20 targets freely move inside the
area, under a speed of 15 cells per time instance, until
the network lifetime has expired.

(vii) The target locations at the previous time instance
obtained by any image-based localization of [10] are
always announced to their associated cameras. After
receiving this location information, every camera
computes the expected locations of its observable
targets at the current time instance by the extended
Kalman filter as in [11]. To add authenticity to the
simulation, we implement imperfect localization by
adding a small amount of noise to our target local-
ization.

To permit greater focus on the network performance of
our interest achieved by our approach, we vary only the
simulation situationswith different neighboring densities and
different target cardinalities, whereas the energy and scaling
specifications of the cameras are not changed. In this envi-
ronment, our approach is evaluated by observing the number
of cameras that are active on average, #Active, the number of
cameras that are redundantly active, #RActive, the number of
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Table 2: Simulation results in the four cases of two densities and two
target cardinalities.

(d, t) #Active #RActive #Missing Lifetime
(7, 10) 6.2 0.85 0.32 1364
(3, 10) 5.7 1.2 0.78 1481
(7, 20) 8.9 0.79 0.72 1163
(3, 20) 9.1 0.93 1.5 1249

Table 3: Analyzed complexity by each operation.

Operation Complexity

Computation

(1) Sensing and processing
images 𝛼

(2) Estimating the current target
locations 𝑂(𝑡

2
)

(3) Computing utilities 𝑂(𝑡
2
+ 𝑡𝑑)

(4) Selecting the mode 𝑂(𝑡)

Communication

(5) Transmitting processed data 𝛽

(6) Exchanging the target
locations 𝑂(𝑡𝑑)

(7) Exchanging utilities 𝑂(𝑡𝑑)

(8) Exchanging selected modes 𝑂(𝑡𝑑)

targets that are missed, #Missing, at a time instance, and the
amount of time that a camera network survives, Lifetime. To
assist in understanding the three metrics, #Active, #RActive,
and #Missing, we present two successful and a single-failed
examples of 𝑑 = 7 and 10 targets as in Figure 6. Generally,
distantly located targets are well covered as in Figure 6(a);
however, Cameras 3 and 5 of Figure 6(b) collectively monitor
their observable targets closely located, because they could
be occluded in the FoV of Camera 5. For both cases, #Active
is 7. As in Figure 6(c), cameras may miss targets as Cameras
7 and 9, #Missing = 1, or be redundantly active as Camera 15,
#RActive= 1, because of wrongly given previous, or differently
estimated current, target locations.

Table 2 illustrates the average simulated values of our four
primary performance metrics (in two or more significant
figures) over 100 random scenario tests. The following claims
can be derived from the results.

Claim 1. On average, six cameras for 10 targets and nine
cameras for 20 targets are active. Accordingly, Lifetime for 10
targets is longer than that for 20 targets.

Claim 2. As 𝑑 is larger, #RActive and #Missing are smaller. It
would be more advantageous for more neighboring cameras
to synthesize more accurate target locations by exchanging
different information and the full network coverage of 𝑑 = 7

is wider than that of 𝑑 = 3.

Claim 3. A smaller numbers of active cameras in all cases
somewhat extend the network lifetime from 1000 to 1481.

Table 4: Simulation results of the five approaches.

(d, t) (7, 10)
App. Ours 5-GS 6-GS 7-GS PG
#Active 6.2 5 6 7 6.7
#RActive 0.85 0.21 0.75 1.29 0.84
#Missing 0.32 1.5 0.74 0.40 0.32
Lifetime 1364 1482 1363 1287 1280
(d, t) (3, 10)
App. Ours 5-GS 6-GS 7-GS PG
#Active 5.7 5 6 7 5.8
#RActive 1.2 2.3 1.7 0.93 1.5
#Missing 0.78 1.6 1.1 0.90 0.80
Lifetime 1481 1912 1732 1489 1474
(d, t) (7, 20)
App. Ours 8-GS 9-GS 10-GS PG
#Active 8.9 8 9 10 9.9
#RActive 0.73 0.14 0.59 0.91 0.69
#Missing 0.72 1.7 1.1 0.82 0.72
Lifetime 1163 1201 1139 1107 1125
(d, t) (3, 20)
App. Ours 8-GS 9-GS 10-GS PG
#Active 9.1 8 9 10 9.2
#RActive 0.92 2.1 1.6 0.88 1.2
#Missing 1.5 2.6 2.1 1.8 1.5
Lifetime 1249 1446 1335 1304 1243

Claim 4. Because of the low #RActives and #Missings in
all cases, our approach might be able to work over some
localization errors, which necessarily occur in any existing
localization techniques.

6.2. Complexity Analysis. Because we consider wireless cam-
eras, we must discuss the resource overhead required by our
proposed method. For each time instance in our design,
energy consumption occurs according to the operations listed
in Table 3.

The complexities for (1) and (5) depend on the models
or algorithms camera sensors employ, and we leave them
as 𝛼 and 𝛽. We strongly emphasize that the two operations
are conducted only by active cameras, and our proposed
approach, on average, activates 0.57 (=9.1/16) times fewer
cameras, including the worst case. The computational com-
plexity for (2) is referred to as 𝑂(𝑡2) [16]. Each target utility,
each camera utility, and each global target utility respectively
consume 𝑂(𝑡), 𝑂(𝑡2), and 𝑂(𝑡𝑑) computations, which leads
to 𝑂(𝑡

2
+ 𝑡𝑑) computation for (3). Given such utilities, a

camera determines its mode by searching in the 𝑂(𝑡) space
for (4). Conversely, the communication complexity for (6) to
(8) is equal to 𝑂(𝑡𝑑) because a camera maximally exchanges
𝑡 pieces of information with 𝑑 neighbors.

The energy consumption of camera sensors is dominated
by (1) and (5) because of the significant size of image data
[3, 17]. This supports our simple assumption about power
consumption that only active cameras can monotonously
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(b) 8 active cameras by 8-GS
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(c) 9 active cameras by 9-GS
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(d) 10 active cameras by 10-GS
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(e) 11 active cameras by PG

Figure 7: Screen shots of the five approaches in the simulation of (𝑑, 𝑡) = (3, 20).

consume a single power bar per time instance and indicates
that our approach can be considered as fairly competitive if
targets are not highly crowded in any of the FoVs.

7. Comparison Work

Utilizing the same environments employed in our simula-
tions, we simulated the representative alternatives, PG of [8]
andGS of [5], whilemeasuring the four network performance
metrics, #Active, #RActive, #Missing, and Lifetime. For GS in
particular, we have heuristically assumed that the optimal
number of active cameras for 10 targets and 20 targets are,
respectively, 6 and 9 by #Actives of Table 2. Because the
numbers are not consistently optimal, we examined three GS
tests for the two different target sets as {5-GS, 6-GS, 7-GS} for
10 targets and {8-GS, 9-GS, 10-GS} for 20 targets. Table 4 lists
each of the network performance results for the five different
approaches, on average, after 100 tests. A smaller number
of active cameras typically result in longer network lifetime;
correspondingly, the GSes with smaller numbers of active
cameras provided the network with longer life. However,
their performance observed for #RActive and #Missing was
lower than analogous results from our approach and PG.
Comparedwith our approach, PGproduces similar results for

every factor. However, PG requires each camera to compute
required utilities for every camera and to communicate
with every other camera. This consumes greater resources
compared with our approach. Therefore, we emphasize that
our approach generally provides more advantageous trade-
offs between {#Active, Lifetime} and #Missing and between
Lifetime and resource overheads compared with the alternate
approaches.

As representative instances of this comparison process,
we provide five simulation screenshots for each approach
in one simulation of (𝑑, 𝑡) = (3, 20) as in Figure 7. Aside
from unobservable targets, our approach covers every target
by 10 active cameras, whereas PG activates one redundant
camera, Camera 15. As previously stated, because GS cannot
adaptively select the number of active cameras, it misses
targets as in Figures 7(b) and 7(c) or it additionally activates
redundant cameras as in Figure 7(d).

8. Conclusion

In this paper, we addressed trade-offs between extending
network lifetime and enhancing its sensing accuracy. To
minimize the energy consumption necessary for data trans-
mission while aggregating individual inferences to build
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a global inference, we utilized the inference tree method
to initialize an optimal data transmission path, and we
demonstrated that it is very effective for reducing the number
of data transmissions and energy consumption. We modeled
a CS in the context of a cooperative bargaining game, where
every participating camera serially optimizes the global
utility, employing only local knowledge based on the serial
dictatorial rule. The simulated results demonstrated that
our approach extends network lifetime and performs accu-
rately over limitedly accurate target locations. Moreover, our
approach is energy-efficient for uncrowded targets, compared
with the alternative representative conventional studies.
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