
Complex Event Processing in EPC Sensor Network Middleware for Both

RFID and WSN

Weixin Wang, Jongwoo Sung, Daeyoung Kim

Auto-ID Lab Korea

Information and Communication University

{weixin.wang, jwsung, kimd}@icu.ac.kr

Abstract

In an integration system of RFID and wireless

sensor network (WSN), RFID is used to identify objects

while WSN can provide context environment

information of these objects. Thus, it increases system

intelligent in pervasive computing. We propose the

EPC Sensor Network (ESN) architecture as an

integration system of RFID and WSN. This ESN

architecture is based on EPCglobal architecture, the

de facto international standard for RFID. The core of

ESN is the middleware part which is also implemented

in our work. In this paper, complex event processing

(CEP) technology is used in our ESN middleware

which can handle large volume of events from

distributed RFID and sensor readers in real time.

Through filtering, grouping, aggregating and

constructing complex event, ESN middleware provides

a more meaningful report for the clients and increases

system automation.

1. Introduction

Today‟s pervasive computing widely uses radio

frequency identification (RFID) and wireless sensor

network (WSN). In RFID technology, a unique ID EPC

(Electronic Product Code) is assigned to a RFID tag

which sticks to a real world object. With the help of

this technology, real world objects can be easily

mapped into the virtual world in an information system.

RFID applications can be found in many areas such as

logistics, industry automation, healthcare and security

[1]. As for WSN technology, in which hundreds to

thousands sensor nodes form one wireless sensor

network, sensors sense the physical environment and

transfer the sensing data back to the base station by

multi-hops. A wide range of WSN applications were

also developed, such as environment monitoring,

military applications, healthcare and object tracking.

However, these two technologies are actually not so

separated from each other, and more importantly the

integration of RFID and WSN will bring us many

advantages in future pervasive computing. On one hand,

the current information system needs to be extended to

support active tags, which can be implemented by

sensor nodes. On the other hand, there is lack of

standards for different sensor networks to share their

data with each other. The existing EPCglobal

architecture [2] for RFID can be used to process and

share information from sensor nodes [3]. The

integration of RFID and WSN can both track objects in

the world and provide the context environment

information to the objects. Hence, the reality and

automation of an information system can be increased.

The EPC Sensor Network (ESN) architecture [3], an

extension of the RFID EPCglobal architecture, is a

global architecture for capturing, filtering and sharing

both RFID and sensor data. In this paper we provide a

design of middleware for ESN architecture. The

middleware in this architecture plays an import role. It

collects RFID and sensor data from distributed readers

and processes this large volume of data in real time.

After filtering, grouping and aggregating, well-

formatted data reports are sent to the upper layer. In the

implementation of our middleware, we adopted

complex event processing (CEP) technology [4], which

can discover the information among multiple events.

CEP is proved to be a powerful tool in describing

relationship between different events such as timing,

causality, and membership in a real-time stream of data

or events. As a result, it enhances the meaning of data

report to upper layer and increases the automation of

the system.

The rest of this paper is organized as follows:

section 2 provides a literature review on the related

works. In section 3, ESN architecture is briefly

introduced. Section 4 discusses the events in ESN

middleware. Later, section 5 describes the architecture

of ESN middleware in detail. Section 6 describes our

implementation, and section 7 concludes the paper.

2. Related works

ESN middleware relates with many current work,

such as RFID and WSN middleware.

In RFID field, the Savant middleware [15] is an

early successful implementation of EPC network.

Currently, several of major IT companies already

provide commercial RFID software, such as SUN EPC

Network [20] and IBM WebSphere RFID Premises

Server [21]. More recently, CEP technology is used in

several RFID middleware systems [5-8]. In paper [5]

Event Processing Language was used to define

complex events while in paper [6] relationship set

which origins from active database was adopted to

define complex events. In this paper, we also follow

relationship set way.

As for WSN part, several sensor data collecting and

sharing architecture already stand out [22-24]. Global

Sensor Network (GSN) [22] middleware that provides

virtual sensor abstraction and powerful query tools

makes the access to the heterogeneous wireless sensor

nodes easier. Hifi architecture [9] is a hierarchical

architecture to process distributed data from RFID and

sensor network. It includes many components, such as

data listener, data stream processor, data disseminator,

resource manger, query listener etc. This paper

proposes a novel approach. Instead of building our

architecture from scratch, ESN middleware design is

based on existing well-developed RFID standard. It

leads to the framework fit for RFID and WSN

integration applications.

3. EPC sensor network architecture

Figure 1. ESN architecture

ESN architecture, shown in Figure 1, is extended

from EPCglobal architecture and supports standard

RFID, WSN and their integration.

The reader layer includes both a RFID reader and a

sensor reader (base station). In RFID, a reader reads

tags in a non-line-of-sight way while in WSN, sensor

data are sent to readers by different types of protocols,

such as Zigbee [8] and IP-USN [10]. Reader

management servers are responsible to monitor the

health of the readers and manage reader functions. The

middleware manipulates large volume of data from

multiple readers. Then those data are filtered, grouped

and reported to EPCIS (EPC Information Services).

RFID and sensor data, together with their business

logic are stored in the EPCIS repository. Finally,

applications can query data in EPCIS. To meet this

goal, we also extend the standard interface among the

parts of the system.

4. Events in the ESN middleware

4.1 RFID events and sensor event

In ESN middleware, two kinds of event objects exist,

RFID event object and sensor event object. As is

described in [11] and [12], RFID event object is

defined as a tuple (ID, L, T) where ID represents EPC

code of the RFID tag, L location and T time stamp. The

sensor event object, which is more complex than RFID,

is defined in a hierarchical way. The first layer is still a

tuple (ID, L, T, D), where ID is the identification of a

sensor node, L location, T time stamp, and D sensor

data. The ID includes both the reader (base station) ID

and the sensor node ID. To achieve the ID uniqueness

property, EPC codes of the reader and the sensor node

can be used as their IDs. L is location; T is time stamp

and D is sensor data. While in the second layer of event

object in D, a tuple of sensing type such as (humidity,

temperature, pressure) can be included.

4.2 Simple and complex events

Simple event is the above RFID or sensor event with

constrain. For example, a RFID event happens in the

test lab is a simple RFID event.

S1 = (ID, L{L=”test lab”}, T)

And the temperature of a sensor event is above 40 is

also a simple sensor event.

S2 = (ID, L, T, D{D.temperature.value>40})

Complex event is a combination of simple events or

complex events with the following set [13]:

AND(∧): E1∧E2 represents two events, where E1

and E2 occur together.

OR(∨): E1∨E2 means either E1or E2 occurs.

NOT(!): !E1 means that E1 does not happen.

SEQ(→): E1→E2 means that E1 is followed by E2.

Relative periodic (Rp): Rp(E1,E2,E3) means that E2

occurs between E1 and E3, possibly several times.

4.3 Rule

The rule, the description of method to process

events, includes three parts: events, conditions and

actions. To get better understanding on the rule, we

illustrate the rule using an example of a warehouse

application (figure 2).

In a warehouse application, in which some products

needs to be stored in cold temperature (below 0

centigrade), sensor nodes are deployed both in the

Truck A and Warehouse B to detect the surrounding

temperature. RFID readers C and D are located at the

doors of warehouse and truck separately. A report of

successful delivery requires the following conditions: 1)

temperature in the truck below 0 degree centigrade; 2)

temperature in the warehouse below 0 degree

centigrade; 3) product delivery time from truck to

warehouse less than 5 minutes.

Figure 2. Warehouse Rule Example

Warehouse rule definition:

Events:

S1 = (ID, L{L=”Truck A”}, T,

D{D.temperature.value<0}) (1)

S2 = (ID, L{L=”Warehouse B”}, T,

D{D.temperature.value<0}) (2)

 S3 = (ID, L{L=”reader D”}, T) (3)

 S4 = (ID, L{L=”reader C”}, T) (4)

 C1 = (S3 →S4) ∧S1 ∧S2 (5)

Conditions:

 S3 .ID = S4 .ID (6)

 S4 .timeStamp - S3 .timeStamp < 5min (7)

Actions:

Generating qualified product entrance report to upper

layer.

In this example rule, (1) and (2) are simple sensor

events; (3) and (4) are simple RFID events. The event

in (5) is a complex event which simultaneously satisfies

events S1, S2, S3 and S4, while at the same time, S3

should happen before S4. The condition in (6)

represents the same product passes through both reader

D and reader C. The condition in (7) defines the

moving time to be less than 5 minutes. If all the above

events and conditions are satisfied, the middleware

system will generate a successful delivery report to the

upper layer.

4.4 Event granularity

In addition to content differences between RFID and

sensor events, the event granularity is different too [14].

In general, the sampling time of a RFID reader is about

every several milliseconds. While in sensor networks,

the reading time of sensor data might be several orders

different among different applications. However, in

spite of the wide range in sensor reading time, few

reading frequencies can be as comparable as RFID

applications because of the power and bandwidth

limitations in sensor network.

To solve this problem, the life time of sensor events

is extended. A new variable defined as duration is

added in the sensor data. This duration variable refers

to the effective life time of sensor data. Thus in the

sensor value is always held as last sensing data during

sensor reading interval.

5. ESN middleware architecture

ESN middleware, which is based on event-driven

architecture, uses complex event processing to meet the

needs of advanced users. It is able to trigger more

sophisticated reports and enhance automation and

efficiency in ubiquitous environment. Furthermore,

ESN follows the standard of RFID, thus there is no

problem to connect with existing RFID systems. By

extending the RFID standard, our middleware can

support RFID, sensor network and the interaction

between them. The middleware design is illustrated in

figure 3. As is shown, four basic components are

included in ESN middleware: event handler, event

database, event processing engine and event action unit.

The event handler collects events from different kinds

of event resources (RFID and sensor readers). The

event database temporarily stores events which are not

processed immediately. In the event processing engine,

events are filtered, grouped, aggregated and finally

formed to be complex events. The last part, the event

action unit, generates actions according to the received

events.

Figure 3. ESN middleware architecture

5.1 Event handler

Events from distributed RFID and sensor readers are

sent to event handler first. In event handler, an event

queue is adopted to manage the processing sequence of

received events. In addition, the event handler can also

send events to temporary event database according to

event duration.

5.2 Event database

In our middleware, not all the events will be

processed immediately. Thus a temporarily storage

mechanism for events is necessary to solve the

incompatibility problem between RFID and sensor

events. Moreover, the operations like aggregation need

a collection of events for a period of time. For example,

instead of sending the temperature data of every hour

to the customer who needs only maximum and average

temperature in one day, the event of every hour can be

temperately stored in event database, and then they will

be processed together in event processing engine.

5.3 Event processing engine

The event processing engine is the kernel of ESN

middleware. It filters out uninteresting data, formats the

remaining useful data and constructs complex events

according to specifications in real-time.

The event specification parser interprets and

transforms event specifications into four processing

steps: filtering, grouping, aggregation and complex

event construction.

The volume of event data is very large in the ESN

middleware system. The filter selects only those

interested events to the upper layer, thus reducing the

report data dramatically.

In the report to upper layer, event data are separated

into several groups for clear demonstration.

Aggregation provides statistic information among

event data. Besides the “count” operation described in

RFID standard [18], we have “SUM, MIN, MAX,

AVG” for sensor event data. By aggregating, the

volume of reported data can be reduced again.

Later, simple events are generated to a complex

event as described in the section 4. Complex events

provide more meaningful reports and enhance the

system automation.

5.4 Event action unit

The event action unit connects to the upper layer

EPCIS or other enterprise applications. It describes

when a complex event will be generated and what

actions will be performed. It can also send report to

EPCIS by subscribing/publishing, notifying enterprise

applications and triggering actuators in the sensor

network.

6. Implementation

ESN middleware is a part of our ongoing EPC

sensor network project. The basic extensions of ALE

and reader protocol have been defined in this work. In

event handler, an asynchronous event queue handles

events from distributed readers. In event database, a

real time in-memory event database technique which

originates from Savant [15] improves real time

performance. A part of Accada [16], an open source

project of RFID EPC network, acts as part of our RFID

event processing. The complex event constructor is

implemented as described in section 4. Finally, for

EPCIS or enterprise applications to get event reports in

the publish/subscribe way, Axis [17] and Tomcat [19]

are used to provide web service.

1. ESN middleware server

2. Alien RFID Reader

3. A sensor node
Figure 4. Smart shelf application

A demo, a smart shelf application (figure 4), was

built to test of our ESN middleware. Bread and cookies

with RFID tags were placed on the shelf to be read by

an Alien reader nearby. Meanwhile, a sensor node

equipped with an Atmelga 128L microcontroller, a

CC2420 RF transceiver, a temperature sensor and a

humidity sensor senses the temperature and humidity of

the smart shelf environment. Sensor nodes in different

shelves compose a WSN and transfer data to reader

using Zigbee.

As an example, one of the complex events in the

above application is generated when there is bread on

the shelf and temperature is above 25 degrees

centigrade. For this complex event, the corresponding

event rules are as follows:
S1 = (ID{ID= „bread ID‟}, L{L=”reader A”}, T)

S2 = (ID, L{L=”shelf A”}, T,

D{D.temperature.value>25})

C1 = S1 ∧S2

When this complex event is generated, EPCIS gets a

report. Figure 5 shows the middleware test client which

interacts with ESN middleware.

7. Conclusion
In this paper, we introduced the use of CEP

technology in the middleware of ESN, an integrated

architecture between RFID and WSN. The events of

RFID, WSN and their interaction were also analyzed.

By adopting CEP technology, we built a middleware

system that has the functions of filtering, grouping and

aggregating event data in real-time. Additionally, this

ESN middleware can construct complex events from

simple events according to their timing, causality, and

membership relationship, thus catching complex

relationship in the real world and providing more

meaningful report to its clients. Finally, we build a

prototype to demonstrate the functionality of our

proposed middleware in real business system.

Acknowledgement

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) grant funded by the

Korea government (MOST) (No. R0A-2007-000

10038-0)"

References
[1] RFID journal, http://www.rfidjournal.com/

[2] EPCglobal, http://www.epcglobalinc.org/home

[3] Jongwoo Sung, Tomas L. Sanchez, Daeyoung Kim, "EPC

Sensor Network for RFID and USN Integrated

Infrastructure", Percom 2007.

[4]Complex event processing, www.complexevents.com

[5] Liang Dong, Dong Wang, Huanye Sheng, “Design of

RFID Middleware Based on Complex Event Processing”,

IEEE conference on Cybernetics and Intelligent Systems,

2006.

[6] Kaushik Dutta, Krithi Ramamritham, Kamlesh Laddhad,

Karthik B. “Real-Time Event Handling in an RFID

Middleware System” Workshop on Databases in Networked

Information Systems (DNIS) 2007, Japan

[7] Fusheng Wang, Shaorong Liu, Peiya Liu, Yijian Bai

“Bridging physical and virtual worlds: complex event

processing for RFID data streams” In EDBT, 2006.

[8] Zigbee alliance. http://www.zigbee.org/.

[9] Michael J.Franklin, et al, “Design considerations

for high fan-in systems: the HiFi approach” CIDR 2005.
[10] http://www.ietf.org/html.charters/6lowpan-charter.html

[11] N.W.Paton, D´ıaz, “Active database systems” ACM

Comput. Surv., 31(1):63-103,1999

[12] H.Gonzalez, J. Han, X. Li, and D. Klabjan,

“Warehousing and analyzing massive rfid data sets”. In

ICDE‟06

[13] S. Chakravarthy. Sentinel: an object-oriented DBMS

with event-based rules. In SIGMOD ‟97: Proceedings of the

1997 ACM SIGMOD international conference on

Management of data, pages 572–575, New York, NY, USA,

1997. ACM Press.

[14] Shawn R. Jeffery, Michael J. Franklin, Minos

Garofalakis “An Adaptive RFID Middleware for

Supporting Metaphysical Data Independence”, VLDB 07,
September 23-27 2007, Austria

[15] Oat Systems and MIT Auto-ID Center, “The Savant

version 0.1 technical report”.

[16] Accada project, http://www.accada.org/

[17] Axis, http://ws.apache.org/axis/

[18] EPCglobal Application Level Events (ALE)

Specification Version 1.0, September 15,2005.

[19] Tomcat, http://tomcat.apache.org

[20] A. Gupta and M. Srivastava, “Developing Auto-ID

solutions using Sun Java system RFID soltuion”.

[21] WebSphere RFID Premises Server. http://www-

306.ibm.com/software/integration/ws_rfid_premises_server/

[22] Karl Aberer, Manfred Hauswirth, Ali Salehi,

“Infrastructure for data processing in large-scale

interconnected sensor networks”, MDM 2007

[23] P. B. Gibbons, et al , “IrisNet: An Architecture for a

World-Wide Sensor Web”, IEEE Pervasive Computing, 2(4),

2003.

[24] M. Sgroi, et al, “A service-based universal application

interface for ad hoc wireless sensor and actuator networks”.

In Ambient Intelligence, 2005

